学习必备 欢迎下载
篇一:《集合的含义与表示》教学设计 《集合的含义与表示》教学设计 一、教材分析
1、教材的地位与作用剖析
《集合与函数的概念》是高中数学必修1的第一章内容,是高中数学的基础,集合作为一种数学思想在其它一些章节中也都有渗透,因此学好这一章内容是十分关键的。本章又是高中数学课程的起始章,内容有一定的抽象性,研究的方法也与初中数学不一样,因此设计好这一章内容的教学不但对学生的知识掌握情况而且对学生能否入门高中数学都是很重要的。
2、教学内容与学情剖析
本教材对集合的定位是将集合作为一种语言来学习的,通过教学使学生感受到用集合语言来表示数学内容时的简洁性、准确性,并使学生能用集合语言简洁、准确地表示数学对象。
高一新生经历了初中的启发式学习,对一些具体的知识已有了一定的掌握,但对一些抽象的知识还不能完全明了如何来学,一些良好的数学素养还需要去形成,一些能力还需要去培养、提高。
3、教学目标与重、难点剖析
鉴于以上分析,又结合《课程标准》的要求,我确定本节课的教学目标、教学重、难点如下:
(1)教学目标 知识技能目标: ①了解。(集合的含义) ②理解。(元素与集合的关系) ③掌握。(集合的表示方法) ④培养。(学生观察、类比、归纳、表达的能力) 过程与方法目标: ①体验从特殊到一般的学习规律; ②渗透分类思想; 情感与价什观目标: ①通过教学,激发学生的学习兴趣,培养学生积极的学习态度; ②通过教学,让学生体会集合的文化价值,感受数学问题探究的过程之美及数学思维的严谨之美;
(2)教学重、难点
重点:集合的基本概念与表示。
难点:用集合的两种常用表示法――列举法与描述法,正确表示一些简单的集合。
[难点突破:]对于难点,则是通过实例引导,启发学生分析、寻找概念区分点,尽而把握概念特点,从而达到准确表达等一系列活动来完成突破。
二、教法设计
由于本节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学不仅使学生能学到知识,更能使学生掌握怎样来学到知识,从而实现培养学生学习能力的目的。为此,对于本节课的教法设计,我从以下三个方面来完成。
1、课前知识准备。通过课前预习、尝试达到让学生知道本节课要学什么的目的。 2、课中自主阅读-探究-归纳。就是在教师组组织下,以学生为主体,发挥学
生的自主作用,培养学生的探究意识,提高学生的归纳能力。从而达到让学生知道怎样来学的目的。
3、课后抽查小结。通过引导学生回顾与小结,从而达到让学生知道学到了什么的目的。 以上三个方面,是由三个问题产生的,因此,我就称之为 “三问教学法”。 [这个方法实际上也是对“堂堂清”这一教学指导思想的较为完整的体现。]
学习必备 欢迎下载
我的设计依据是:支架式教学理念,就是把教学看成是一个由教师的“导”、学生的“学”及教学过程中的“悟”三要素组成的整体。教师的启发、诱导、激励为学生的学习搭建支架,把学习任务转移给学生;学生则是接受任务、探究任务、完成任务。这两条线以问题为核心,通过对知识的发生、发展和运用过程的演绎、展示和探究来组织和推动教学。
三、学法指导
作为高中数学的起始章,重视潜移默化地进行初、高中知识和学习方法的过渡,培养良好的高中数学学习习惯,以逐步适应后续的高中数学学习。
本节课是本章的第一节课,针对学生实际情况及本节课内容的特点,我从以下几个方面来完成对学生的学法指导:
1、通过启发思考、引导阅读、诱使探究来完成学生良好的数学素养(阅读、探究、归纳、反思)的形成。
2、通过归纳小结、知识反馈来实现学生数学能力的提高。
3、通过对过程的回顾来让学生认识到学习是一个递进的(循序渐进)、积累(潜移默化)的过程。
四、教学程序
本着遵循学生的认知规律、让学生去经历知识的形成过程、发展过程的原则,在本节课的教学过程中,我设计了如下的环节:
1、创设情景、导入新课 多媒体展示: [生活实例]
一群迁徙的鸟在飞翔;雪原上一群奔跑的马; ??
鸟群、马群??都是“同一类对象汇集在一起”,这就是本章将要学习的集合。 启发1:想一想:集合这个术语,在初中我们是否使用过? [联想旧知]
在初中学习“自然数”、“有理数”等内容时,已经使用了“自然数集”、“有理数集”等术语,并且一提到这些语言,我们就会想它所包含的内容。另外,初中代数《不等式的解法》中也有曾提到:一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集。不等式解集的定义中也涉及到“集合”。
启发2:用“集合”来描述研究对象,既简洁又方便。那么, 集合的含义到底是什么? 通过“展示[生活实例]启发[联想旧知]从而[产生问题]尽而[引入新课]”来激发学生的学习动机,培养学生思维的主动性, 为新知的学习与接受做好准备;
2、自主阅读、探求新知 多媒体展示
[观察下列集合实例]
(1)20XX年上海世博会中所有展馆。 (2)目前河南省的所有“国家地质公园”。 (3)高一(1)班的全体同学。 (4)所有的正方形。
(5)20以内的所有奇数。
启发:以上几种集合实例有何共同特征? [阅读教材,完成问题]
(1)本节关于集合知识有哪些概念? (2)元素与集合有何关系?
(3)集合的常用的表示方法有哪些?各自特点如何? (4)本节中涉及了哪些新的符号?是怎样表示的?
学习必备 欢迎下载
通过“组织学生[观察集合实例]引导学生[阅读教材内容]启发学生[自主探究学习]”来培养学生参与学习的自主意识,充分调动其自主学习的积极性。其中,集合实例的设置做到新颖(有吸引力)和联系旧知(亲和力)两点。
3、感悟实例、归纳新知 多媒体展示
[集合的有关概念]
(1)集合的概念:集合的含义: 集合中元素特点:
(2)常用数集及记法:自然数集: 正整数集: 整数集: 有理数集: 实数集: [元素与集合的关系] (1)属于: (2)不属于:
[集合的表示方法] (1)自然语言法: (2)描述法、列举法: (3)图示法: [集合的分类] (1)有限集: (2)无限集: (3)空集:
通过师生互动,来展示阅读探究的结果,即构建新知联系、归纳新知识点。
[设计意图:]本环节既是对学生自主阅读环节的反馈,也是对学生归纳、表达能力的培养。与传统的灌输式教学相比较,这一环节更体现了平等和谐的师生关系。
4、巩固新知、反馈回授 [基础巩固]
例1、用列举法表示下列集合:
(1)小于10的所有素数组成的集合。
(2)由大于-1小于7的自然数组成的集合。 (3)方程x2-16=0的实数解组成的集合。 例2、用描述表示下列集合:
(1)小于10的有理数组成的集合。 (2)所有的偶数组成的集合。
(3)直角坐标平面内,由第二象限内的点组成的集合。 [题后反思]能否用描述法把例1中的三个集合表示出来? [随堂练习] [拓展练习]
通过[例题]的分析,组织学生完成[课后练习]并进一步完成[拓展练习]从而达到知识的升华。
[设计意图:]本环节设计目的是实现学生对本节知识的应用,完成学生学习的“实践―――认识―――再实践”过程,力求通过(对例题)入微的分析、规范的板书来引导学生养成良好地解题习惯;通过课后练习实现教师的再指导和学生的渐进式提高;通过拓展练习加深学生对本节知识的理解。
5、归纳小结、布置作业 [学生自查、小结]
启发:本节课你学到了什么? [作业布置]
学习必备 欢迎下载
方案一: 方案二:
引导学生围绕“本节学到了什么”这一问题展开回顾与反思,尽而让学生自主地完成对本节知识的建构。
6、板书设计
本节课我设计了由三个板块构成的板书,第一大板块是本节课的知识结构;第二板块书
写了例1、例2及拓展练习;第三板块是学生演板。由此,让本节的知识更清析,过程更明了。
五、评价分析
教学评价的及时有效能调动课堂的气氛、感染学生的情绪,对课堂教学发挥着积极的推动作用,因此,我将教学评价贯穿于本节课的每个教学环节中。例如情景导入的表达式评价、回忆旧知识的记忆评价、得出集合有关概念的归纳评价、书写集合有关符号时的准确性评价、进行集合表示时的规范性评价、小结时的表述性评价等。在学生交流、讨论、探究等环节我还注意启发学生自评、互评,通过以上这些评价方式让更多的学生获得学习的自信,从而,在轻松融洽的课堂评价氛围中完成本节课的教学和学习任务。
另外,我还会通过对学生作业的批改获得更全面的对学生知识掌握的评价和课堂效果的反思,并在后续的时间里修订课堂设计方案,以达到预期的教学效果。
以上是我对《集合的含义与表示》这节课的设计和思考,敬请大家批评、指正!谢谢! 篇二:集合的含义与表示教学设计 集合的含义与表示
一、教学内容分析:集合概念及其基本理论,称为集合论,是近现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在数学理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域中得到应用。
四、教学目标:
1. 知识与技能:(1)通过实例,了解集合的含义,体会集合与元素的属于关系; (2)知道常用数集及其专用记号;
(3)了解集合中元素的确定性、互异性、无序性; (4)会用集合语言表示有关数学对象; (5)培养学生抽象概括的能力
2. 过程与方法:(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感
知集合的含义。
3. 情感、态度与价值观:让学生感受到学习集合的必要性,增强学习的积极性 五、教学重点和难点:
重点:集合的含义与表示方法 难点:表示方法的恰当选择 六、教学过程设计:
(一)创设情境,解释课题:1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?(引导学生回忆,举例和互相交流。与此同时,教师对学生的活动给予评价)2.接着教师指出:那么,集合的含义是什么?这就是我们这一堂课所要学习的内容
(二)研究新知
1. 教师利用多媒体设备向学生投影出下面9个实例: (1)1—20以内的所有质数; (2)我国古代的四大发明; (3)所有的安理会常任理事国; (4)所有的正方形;
(5)浙江省在20XX年之前建成的立交桥; (6)到一个角的两边距离相等的所有的点;
学习必备 欢迎下载
(7)方程x2—5x+6=0的所有实数根; (8)不等式x—3>0的所有解;
(9)实验中学20XX年9月入学的高一学生的全体
2. 教师组织学生分组讨论:这9个实例的共同特征是什么?
3. 每个小组选出一位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实
例的特征,并给出集合的含义。(一般地,指定的某些对象的全体称为集合,简称集。集合中的每个对象叫做这个集合的元素)
4. 教师指出,集合常用大写字母a,b,c,d……表示,元素常用小写字母a,b,c,d……表
示
(三)质疑答辩,排忧解惑,发展思维
1. 教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别
辅导,解答学生阴暗,使学生明确集合元素的三大特性,即:确定性,互异性和无序性。只要构成两个集合的元素是一样的,我们就称这两个集合相等。 2. 教师组织引导学生思考以下问题:
判断一下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数(2)我国的小河流(让学生充分发表自己的见解)
3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由。
教师对学生的学习活动及时的评价。 4. 教师提出问题,让学生思考
(1)如果用a表示高一(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,b表示高一4班的一位同学,那么a,b与集合a分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于(如果a是集合a的元素,就说a属于集合a,记作a∈a;如果a不是集合a的元素,就说a不属于集合a,记作a?a)
(2)让学生完成教材第6页联系第1题
5. 教师引导学生回忆数集扩充过程,然后阅读教材中的相关内容,写出常用数集的记
号,并让学生完成习题1.1a组第1题
6. 教师引导学生阅读教材中的相关内容,并思考,讨论下列问题: (1)要表示一个集合共有几种方式?
(2)试比较自然语言,列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?
(3)如何根据问题选择适当的集合表示法?(使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象)
(四)巩固深化,反馈矫正
教师投影学习:(1)用自然语言描述集合{1,3,5,7,9}(2)用例举法表示集合a={x∈n 1≤x<8}(3)试选择适当的方法表示下列集合:教材第6页第2题
(五)归纳整理,整体认识
在师生互动中,让学生了解或体会下列问题: 1. 本节课我们学习过哪些知识内容? 2. 你认为学习集合有什么意义?
3. 选择集合的表示法时应注意些什么? (六)承上启下,留下悬念
1. 课后书面作业:第13页习题1.1a组第4题
2. 元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种?
如何表示?请同学们通过预习教材
七、教学反思:集合语言是现代数学的基本语言,在高中数学课程中,它于是学习、掌握和使用数学语言的基础,由于集合的概念较难理解,因此采用渐进式学习,而集合的列举法和描述法的形式比较容易接受,在注重让学生自己学习,重点引导学生学习这两种方法的应用。