人教版高中数学必修1精品教案(整套)
课题:集合的含义与表示(1)
课 型:新授课
教学目标:
(1) 了解集合、元素的概念,体会集合中元素的三个特
征;
(2) 理解元素与集合的“属于”和“不属于”关系; (3) 掌握常用数集及其记法; 教学重点:掌握集合的基本概念; 教学难点:元素与集合的关系; 教学过程: 一、引入课题
军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体. 阅读课本P2-P3内容 二、新课教学
(一)集合的有关概念
1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们
能意识到这些东西,并且能判断一个给定的东西是否属于这个总体.
2. 一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集.
3. 思考1:判断以下元素的全体是否组成集合,并说明理由:
(1) 大于3小于11的偶数; (2) 我国的小河流; (3) 非负奇数; (4) 方程x2?1?0的解; (5) 某校2007级新生; (6) 血压很高的人; (7) 著名的数学家;
(8) 平面直角坐标系内所有第三象限的点 (9) 全班成绩好的学生.
对学生的解答予以讨论、点评,进而讲解下面的问题. 4. 关于集合的元素的特征
(1)确定性:设A是一个给定的集合,x是某一个具体
对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.
(2)互异性:一个给定集合中的元素,指属于这个集合
的互不相同的个体(对象),因此,同一集合中不应
重复出现同一元素.
(3)无序性:给定一个集合与集合里面元素的顺序无关.
(4)集合相等:构成两个集合的元素完全一样. 5. 元素与集合的关系;
(1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A
(2)如果a不是集合A的元素,就说a不属于(not
belong to)A,记作:a?A
例如,我们A表示“1~20以内的所有质数”组成的集合,则有3∈A 4?A,等等.
6.集合与元素的字母表示: 集合通常用大写的拉丁字母A,B,C…表示,集合的元素用小写的拉丁字母a,b,c,…表示. 7.常用的数集及记法:
非负整数集(或自然数集),记作N; 正整数集,记作N*或N+; 整数集,记作Z; 有理数集,记作Q; 实数集,记作R; (二)例题讲解:
例1.用“∈”或“?”符号填空:
(1)8 N; (2)0 N; (3)-3 Z; (4)2 Q;
(5)设A为所有亚洲国家组成的集合,则中国 A,美国 A,印度 A,英国 A.
例2.已知集合P的元素为1,m,m2?3m?3, 若3∈P且-1?P,
求实数m的值.
(三)课堂练习: 课本P5练习1; 归纳小结:
本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了常用集合及其记法. 作业布置:
1.习题1.1,第1- 2题; 2.预习集合的表示方法. 课后记:
课 型:课题:新授课
集合的含义与表示(2)