2024年江苏省无锡市中考数学试卷
一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确的选项填在相应的括号内) 1.(3分)5的相反数是( ) A.﹣5 2.(3分)函数y=A.x≠
2
B.5 C.﹣ D.
中的自变量x的取值范围是( ) B.x≥1
2
C.x> D.x≥
3.(3分)分解因式4x﹣y的结果是( ) A.(4x+y)(4x﹣y) C.(2x+y)(2x﹣y)
B.4(x+y)(x﹣y) D.2(x+y)(x﹣y)
4.(3分)已知一组数据:66,66,62,67,63,这组数据的众数和中位数分别是( ) A.66,62
B.66,66
C.67,62
D.67,66
5.(3分)一个几何体的主视图、左视图、俯视图都是长方形,这个几何体可能是( ) A.长方体
B.四棱锥
C.三棱锥
D.圆锥
6.(3分)下列图案中,是中心对称图形但不是轴对称图形的是( )
A. B. C. D.
7.(3分)下列结论中,矩形具有而菱形不一定具有的性质是( ) A.内角和为360° C.对角线相等
B.对角线互相平分 D.对角线互相垂直
8.(3分)如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B,若∠P=40°,则∠B的度数为( )
A.20°
B.25°
C.40°
D.50°
9.(3分)如图,已知A为反比例函数y=(x<0)的图象上一点,过点A作AB⊥y轴,垂足为B.若
1
△OAB的面积为2,则k的值为( )
A.2
B.﹣2
C.4
D.﹣4
10.(3分)某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为( ) A.10
B.9
C.8
D.7
二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上)
11.(2分)的平方根为 .
12.(2分)2024年6月29日,新建的无锡文化旅游城将盛大开业,开业后预计接待游客量约20000000人次,这个年接待客量可以用科学记数法表示为 人次. 13.(2分)计算:(a+3)= .
14.(2分)某个函数具有性质:当x>0时,y随x的增大而增大,这个函数的表达式可以是 (只要写出一个符合题意的答案即可).
15.(2分)已知圆锥的母线长为5cm,侧面积为15πcm,则这个圆锥的底面圆半径为 cm. 16.(2分)已知一次函数y=kx+b的图象如图所示,则关于x的不等式3kx﹣b>0的解集为 .
2
2
17.(2分)如图,在△ABC中,AC:BC:AB=5:12:13,⊙O在△ABC内自由移动,若⊙O的半径为1,且圆心O在△ABC内所能到达的区域的面积为
,则△ABC的周长为 .
2
18.(2分)如图,在△ABC中,AB=AC=5,BC=4
,D为边AB上一动点(B点除外),以CD为一
边作正方形CDEF,连接BE,则△BDE面积的最大值为 .
三、解答题(本大题共10小题,共84分.请在试卷相应的区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(8分)计算: (1)|﹣3|+()﹣((2)2a?a﹣(a). 20.(8分)解方程: (1)x﹣2x﹣5=0; (2)
=
.
23
3
2
3
﹣1
);
0
21.(8分)如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点O. (1)求证:△DBC≌△ECB; (2)求证:OB=OC.
22.(6分)某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品. (1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为 ;
3
(2)如果小芳有两次摸球机会(摸出后不放回),求小芳获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程)
23.(6分)《国家学生体质健康标准》规定:体质测试成绩达到90.0分及以上的为优秀;达到80.0分至89.9分的为良好;达到60.0分至79.9分的为及格;59.9分及以下为不及格.某校为了了解九年级学生体质健康状况,从该校九年级学生中随机抽取了10%的学生进行体质测试,测试结果如下面的统计表和扇形统计图所示. 各等级学生平均分统计表 等级 平均分 优秀 92.1 良好 85.0 及格 69.2 不及格 41.3 (1)扇形统计图中“不及格”所占的百分比是 ; (2)计算所抽取的学生的测试成绩的平均分;
(3)若所抽取的学生中所有不及格等级学生的总分恰好等于某一个良好等级学生的分数,请估计该九年级学生中约有多少人达到优秀等级.
24.(8分)一次函数y=kx+b的图象与x轴的负半轴相交于点A,与y轴的正半轴相交于点B,且sin∠ABO=
.△OAB的外接圆的圆心M的横坐标为﹣3.
(1)求一次函数的解析式; (2)求图中阴影部分的面积.
4
25.(8分)“低碳生活,绿色出行”是一种环保,健康的生活方式,小丽从甲地出发沿一条笔直的公路骑行前往乙地,她与乙地之间的距离y(km)与出发时间之间的函数关系式如图1中线段AB所示.在小丽出发的同时,小明从乙地沿同一条公路骑车匀速前往甲地,两人之间的距离x(km)与出发时间t(h)之间的函数关系式如图2中折线段CD﹣DE﹣EF所示. (1)小丽和小明骑车的速度各是多少? (2)求点E的坐标,并解释点E的实际意义.
26.(10分)按要求作图,不要求写作法,但要保留作图痕迹.
(1)如图1,A为⊙O上一点,请用直尺(不带刻度)和圆规作出⊙O的内接正方形;
(2)我们知道,三角形具有性质:三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高所在直线相交于一点. 请运用上述性质,只用直尺(不带刻度)作图.
①如图2,在?ABCD中,E为CD的中点,作BC的中点F.
②如图3,在由小正方形组成的4×3的网格中,△ABC的顶点都在小正方形的顶点上,作△ABC的高AH.
27.(10分)已知二次函数y=ax+bx﹣4(a>0)的图象与x轴交于A、B两点,(A在B左侧,且OA<OB),与y轴交于点C.
(1)求C点坐标,并判断b的正负性;
(2)设这个二次函数的图象的对称轴与直线AC相交于点D,已知DC:CA=1:2,直线BD与y轴交于点E,连接BC.
①若△BCE的面积为8,求二次函数的解析式;
5
2