410081181225?13. 14.?2 15.? 16.cm3
31256三、解答题
17.解:(1)由2bcosA?acosC?ccosA?0及正弦定理得?2sinBcosA?sinAcosC?cosAsinC, 即?2sinBcosA?sin(A?C)?sinB, 在?ABC中,sinB?0, 所以cosA??1, 22?. 3又A?(0,?),所以A?在?ABC中,由余弦定理得a2?b2?c2?2bccosA?b2?c2?bc?7, 所以a?7.
2121244414(2)由AD?AB?AC,得AD?(AB?AC)2????2?1?(?)?,
3333999292所以|AD|?.
318.解:(1)连接A1B,A1D,AC,
因为AB?AA1?AD,?A1AB??A1AD?60?, 所以?A1AB和?A1AD均为正三角形, 于是A1B?A1D.
?BD, 设AC与BD的交点为O,连接AO1,则AO1又四边形ABCD是正方形,所以AC?BD, 而AO1AC?O,所以BD?平面A1AC,
又AA1?平面A1AC,所以BD?AA1, 又CC1//AA1,所以BD?CC1. (2)由A1B?A1D?于是AO?A1O?2,及BD?2AB?2,知A1B?A1D,
12?AO, BD?AA1,从而AO122结合AO?BD,AO1BD?O,
得A1O?底面ABCD, 所以OA、OB、OA两两垂直.
如图,以点O为坐标原点,OA的方向为x轴的正方向,建立空间直角坐标系O?xyz,
则A(1,0,0),B(0,1,0),D(0,?1,0),A1(0,0,1),C(?1,0,0),DB?(0,2,0),BB1?AA1?(?1,0,1),
D1C1?DC?(?1,1,0),
由DD1?AA1?(?1,0,1),易求得D1(?1,?1,1).
设D1E??D1C1(???0,1?),则(xE?1,yE?1,zE?1)??(?1,1,0),即E(???1,??1,1). 设平面B1BD的一个法向量为n?(x,y,z),
??n?DB?0,?y?0,由?得?令x?1,得n?(1,0,1), ??n?BB1?0,??x?z?0,设直线DE与平面BDB1所成角为?,则sin??|cos?DE,n?|?解得??|1?(???1)?0???1?1|2??2?(?1??)2?1?7, 1411或???(舍去). 237. 14所以当E为D1C1的中点时,直线DE与平面BDB1所成角的正弦值为
19.解:(1)所抽取的100包速冻水饺该项质量指标值的样本平均数x为:
x?5?0.1?15?0.2?25?0.3?35?0.25?45?0.15?26.5.
(2)①∵Z服从正态分布N(?,?),且??26,??11.95,
2∴P(14.55?Z?38.45)?P(26.5?11.95?Z?26.5?11.95)?0.6826, ∴Z落在(14.55,38.45)内的概率是0.6826. ②根据题意得X~B(4,),
121131014114214314P(X?0)?C4()?;P(X?1)?C4()?;P(X?2)?C4()?;P(X?3)?C4()?;
2162428241414P(X?4)?C4()?.
216∴X的分布列为
X 0 1 2 3 4 P ∴E(X)?4?1 161 43 81 41 161?2. 2?c2,??a2???20.解:(1)由已知可得?2csin?2,解得a2?2,b2?c2?1,
4??a2?b2?c2,??x2故所求的椭圆方程为?y2?1.
2?x22??y?1,22(2)由?2得(1?2k)x?8kx?6?0,
?y?kx?2,?则??64k?24(1?2k)?16k?24?0,解得k??设A(x1,y1),B(x2,y2), 则x1?x2??22266或k?. 228k6,, xx?12221?2k1?2k则kAD?y1?11y2?2,k?2,
BDx1x2所以kAD?kBD13y1x2?y2x1?(x1?x2)2kx1x2?(x1?x2)6k?6k22????0,
x1x2x1x23所以kAD?kBD为定值,且定值为0. 21.解:(1)f'(x)?e?2(a?1),
当函数f(x)在区间?0,1?上单调递增时,f'(x)?ex?2(a?1)?0在区间?0,1?上恒成立, ∴2(a?1)?(ex)min?1(其中x??0,1?),解得a?xx3; 2当函数f(x)在区间?0,1?上单调递减时,f'(x)?e?2(a?1)?0在区间?0,1?上恒成立, ∴2(a?1)?(ex)max?e(其中x??0,1?),解得a?e?1. 2综上所述,实数a的取值范围是(??,][?1,??). (2)g'(x)?e?2(a?1)x?b?f(x).
由g(0)?g(1)?0,知g(x)在区间(0,1)内恰有一个零点, 设该零点为x0,则g(x)在区间(0,x0)内不单调, 所以f(x)在区间(0,x0)内存在零点x1, 同理,f(x)在区间(x0,1)内存在零点x2, 所以f(x)在区间(0,1)内恰有两个零点. 由(1)知,当a?意.
x32e23时,f(x)在区间?0,1?上单调递增,故f(x)在区间(0,1)内至多有一个零点,不合题2e?1时,f(x)在区间?0,1?上单调递减,故f(x)在区间(0,1)内至多有一个零点,不合题意, 23e所以?a??1.
22当a?令f'(x)?0,得x?ln(2a?2)?(0,1),
所以函数f(x)在区间?0,ln(2a?2)?上单调递减,在区间(ln(2a?2),1]内单调递增. 记f(x)的两个零点为x1,x2(x1?x2),
因此x1?(0,ln(2a?2)],x2?(ln(2a?2),1),必有f(0)?1?b?0,f(1)?e?2a?2?b?0. 由g(1)?0,得a?b?e, 所以f()?12e?1?(a?b)?e?1?e?0,
又f(0)?a?e?1?0,f(1)?2?a?0, 所以e?1?a?2.
综上所述,实数a的取值范围为(e?1,2).
22.解:(1)圆C1:??x??1?acos?,(?是参数)消去参数?,
?y??1?asin?222得其普通方程为(x?1)?(y?1)?a, 将x??cos?,y??sin?代入上式并化简,
2得圆C1的极坐标方程为??22?sin(??由圆C2的极坐标方程??22cos(??将x??4)?a2?2?0.
?4),得?2?2?cos??2?sin?.
?cos?,y??sin?,x2?y2??2代入上式,
22得圆C2的直角坐标方程为(x?1)?(y?1)?2.
(2)由(1)知圆C1的圆心C1(?1,?1),半径r1?a;圆C2的圆心C2(1,1),半径r2?2,
|C1C2|??1?(?1)???1?(?1)?22?22,
∵圆C1与圆C2外切, ∴2?a?22,解得a?2,
即圆C1的极坐标方程为???22sin(??将???4),
?12代入C1,得???22sin(?),得???6, 124??将???12代入C2,得??22cos(?),得??6, 124??故|AB|?|?1??2|?26.