星形电路与三角形电路等效变换公式的简便方法
摘要:介绍导出星形电路与三角形电路等效变换公式的一种简便方法
关键词:星形电路 三角形电路 等效变换
星形电路与三角形电路间的等效变换(简称Y—△等效变换)是电路分析和计算过程中经常需用到的一种变换。因变换公式推导过程复杂,故在解决有关问题时,人们通常直接套用有关公式。然而,由于变换公式形式比较繁锁,记忆不便,每次计算通常都需查找电路方面的有关书籍,给Y—△等效变换带来了不便。最近有人已进行了一些研究,试图解决这一问题。在本文中,作者提出了一种导出Y—△等效变换公式的简便方法。利用该法,可非常迅速地写出Y—△等效变换公式,给电路的Y—△等效变换带来了方便。
为了说明本文方法,先以电阻电路为例,列写出Y—△等效变换公式。设图1(a)和图1(b)两电路互为等效电路,则两电路的电阻间存在以下关系。
R1= (1)R2= (2)R3= (3) R12= + + (4)R23= + + (5)R31= + +(6)
若星形电路的三个电阻相等,即R1= R2 =R3= RY,则等效的三角形电路有三个电阻也相等,即R12= R23 =R31= R△。将这些关系停薪留职入(1)式和(4)式可得
RY= R△ (7)R△=3RY (8)
以上(1)—(8)式即为Y—△等效变换用到的有关公式。本文提出的导出上述各公式的方法是首先通过对称Y形和△形电路导出(7)、(8)两式,然后根据Y—△等效变换公式的基本形式对(7)、(8)两式进行变化,最后利用电路元件位置的对称性,通过变化了的(7)、(8)两式直接写出(1)—(6)式。下面介绍这一方法。
设图2(a)和图2(b)互为等效电路,从两电路的1端流入的电流均为I,并且该电流分为两等份分别从2、3端流出。因图2(a)和图2(b)互为等效电路,故两电路的1、2端间的电压相等,所以有
RYI+RY• I=R△• I(9) 由此得RY= R△ (10)
这样即导出了(7)式,根据Y—△等效变换公式的基本形式,可将(10)式变为