好文档 - 专业文书写作范文服务资料分享网站

星形电路与三角形电路等效变换公式的简便方法

天下 分享 时间: 加入收藏 我要投稿 点赞

星形电路与三角形电路等效变换公式的简便方法

摘要:介绍导出星形电路与三角形电路等效变换公式的一种简便方法

关键词:星形电路 三角形电路 等效变换

星形电路与三角形电路间的等效变换(简称Y—△等效变换)是电路分析和计算过程中经常需用到的一种变换。因变换公式推导过程复杂,故在解决有关问题时,人们通常直接套用有关公式。然而,由于变换公式形式比较繁锁,记忆不便,每次计算通常都需查找电路方面的有关书籍,给Y—△等效变换带来了不便。最近有人已进行了一些研究,试图解决这一问题。在本文中,作者提出了一种导出Y—△等效变换公式的简便方法。利用该法,可非常迅速地写出Y—△等效变换公式,给电路的Y—△等效变换带来了方便。

为了说明本文方法,先以电阻电路为例,列写出Y—△等效变换公式。设图1(a)和图1(b)两电路互为等效电路,则两电路的电阻间存在以下关系。

R1= (1)R2= (2)R3= (3) R12= + + (4)R23= + + (5)R31= + +(6)

若星形电路的三个电阻相等,即R1= R2 =R3= RY,则等效的三角形电路有三个电阻也相等,即R12= R23 =R31= R△。将这些关系停薪留职入(1)式和(4)式可得

RY= R△ (7)R△=3RY (8)

以上(1)—(8)式即为Y—△等效变换用到的有关公式。本文提出的导出上述各公式的方法是首先通过对称Y形和△形电路导出(7)、(8)两式,然后根据Y—△等效变换公式的基本形式对(7)、(8)两式进行变化,最后利用电路元件位置的对称性,通过变化了的(7)、(8)两式直接写出(1)—(6)式。下面介绍这一方法。

设图2(a)和图2(b)互为等效电路,从两电路的1端流入的电流均为I,并且该电流分为两等份分别从2、3端流出。因图2(a)和图2(b)互为等效电路,故两电路的1、2端间的电压相等,所以有

RYI+RY• I=R△• I(9) 由此得RY= R△ (10)

这样即导出了(7)式,根据Y—△等效变换公式的基本形式,可将(10)式变为

星形电路与三角形电路等效变换公式的简便方法

星形电路与三角形电路等效变换公式的简便方法摘要:介绍导出星形电路与三角形电路等效变换公式的一种简便方法关键词:星形电路三角形电路等效变换星形电路与三角形电路间的等效变换(简称Y—△等效变换)是电路分析和计算过程中经常需用到的一种变换。因变换公式推导过程复杂,故在解决有关问题时,人们通常直接套用有关公式。然而,由于变换
推荐度:
点击下载文档文档为doc格式
7zjtt34rov721es5igyi
领取福利

微信扫码领取福利

微信扫码分享