高中数学 必修1知识点
集合
?()元素与集合的关系:属于(?)和不属于(?)?1???2)集合中元素的特性:确定性、互异性、无序性?集合与元素(??(?3)集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集??4)集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法(?????子集:若x?A ?x?B,则A?B,即A是B的子集。?????1、若集合A中有n个元素,则集合A的子集有2n个,真子集有(2n-1)个。????????2、任何一个集合是它本身的子集,即 A?A?? 注????关系???3、对于集合A,B,C,如果A?B,且B?C,那么A?C.????4、空集是任何集合的(真)子集。??????真子集:若A?B且A?B?(即至少存在x0?B但x0?A),则A是B的真子集。集合???????集合相等:A?B且A?B ?A?B?????集合与集合??定义:A?B??x/x?A且x?B??交集?????性质:A?A?A,A????,A?B?B?A,A?B?A,A?B?B,A?B?A?B?A?????????定义:A?B??x/x?A或x?B????并集?????性质:A?A?A,A???A,A?B?B?A,A?B?A,A?B?B,A?B?A?B?B???运算???? Card(A?B)?Card(A)?Card(B)-Card(A?B)?? ???定义:CUA??x/x?U且x?A??A??????补集?性质:?(CUA)?A??,(CUA)?A?U,CU(CUA)?A,CU(A?B)?(CUA)?(CUB),???? C(A?B)?(CA)?(CB)??UUU?????
第一章 集合与函数概念
【1.1.1】集合的含义与表示
(1)集合的概念
把某些特定的对象集在一起就叫做集合. (2)常用数集及其记法
N表示自然数集,N?或N?表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.
(3)集合与元素间的关系
对象a与集合M的关系是a?M,或者a?M,两者必居其一. (4)集合的表示法
①自然语言法:用文字叙述的形式来描述集合.
②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x|x具有的性质},其中x为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类
①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(?).
【1.1.2】集合间的基本关系
(6)子集、真子集、集合相等 名称 记号 意义 (1)A?A A中的任一元素都属于B (2)??A (3)若A?B且B?C,则A?C (4)若A?B且B?A,则A?B (1)??A(A为非空子集) ?性质 示意图 A?B 子集 (或A(B)BAB?A) A?B ?或 A?B,且B中至少有一元素不属于A 真子集 (或B?A) ?(2)若A?B且B?C,则A?C ???BA 集合 相等 A?B A中的任一元素都属于B,B中的任一元素都属于A (1)A?B (2)B?A nA(B) nnn(7)已知集合A有n(n?1)个元素,则它有2个子集,它有2?1个真子集,它有2?1个非空子集,它有2?2非空真子集.
【1.1.3】集合的基本运算
(8)交集、并集、补集 名称 记号 意义 性质 示意图 交集 AIB {x|x?A,且x?B} (1)AIA?A (2)AI??? (3)AIB?A ABAIB?B (1)AUA?A (2)AU??A (3)AUB?A AUB?B 并集 AUB {x|x?A,或x?B} AB 补集 ⑴ {x|x?U,且x?A}⑵ ⑶ ⑷ ⑸ ( ⑼ 集合的运算律: 交换律:A?B?B?A;A?B?B?A.
结合律:(A?B)?C?A?(B?C);(A?B)?C?A?(B?C) 分配律:A?(B?C)?(A?B)?(A?C);A?(B?C)?(A?B)?(A?C) 0-1律:?IA??,?UA?A,UIA?A,UUA?U 等幂律:A?A?A,A?A?A. 求补律:A∩ A∪=U
反演律:(A∩B)=(A)∪(B) (A∪B)=(A)∩(B)