֪ʶµã 1£ºÒ»Ôª¶þ´Î·½³ÌµÃ»ù±¾¸ÅÄî
1£®Ò»Ôª¶þ´Î·½³Ì 3x2
+5x-2=0 µÃ³£ÊýÏî¾ÍÊÇ -2¡¢
2£®Ò»Ôª¶þ´Î·½³Ì 3x2+4x-2=0 µÃÒ»´ÎÏîϵÊýΪ 4£¬³£ÊýÏî¾ÍÊÇ -2¡¢ 3£®Ò»Ôª¶þ´Î·½³Ì 3x2-5x-7=0 µÃ¶þ´ÎÏîϵÊýΪ 3£¬³£ÊýÏî¾ÍÊÇ -7¡¢ 4£®°Ñ·½³Ì 3x(x-1)-2=-4x »¯ÎªÒ»°ãʽΪ 3x2
-x-2=0 ¡¢
֪ʶµã 2£ºÖ±½Ç×ø±êϵÓëµãµÃλÖÃ
1£®Ö±½Ç×ø±êϵÖУ¬µã A £¨3£¬
0£©ÔÚ y ÖáÉÏ¡£ 2£®Ö±½Ç×ø±êϵÖУ¬ x ÖáÉϵÃÈÎÒâµãµÃºá×ø±êΪ 0¡¢
3£®Ö±½Ç×ø±êϵÖУ¬µã A £¨1£¬
1£©ÔÚµÚÒ»ÏóÏÞ¡¢ 4£®Ö±½Ç×ø±êϵÖУ¬µã A £¨-2£¬
3£©ÔÚµÚËÄÏóÏÞ¡¢ 5£®Ö±½Ç×ø±êϵÖУ¬µã A £¨-2£¬ 1£©ÔÚµÚ¶þÏóÏÞ¡¢
֪ʶµã 3£ºÒÑÖª×Ô±äÁ¿µÃÖµÇóº¯ÊýÖµ
1£®µ± x=2 ʱ ,º¯Êý y= 2x 3 µÃֵΪ 1¡¢ 2£®µ± x=3 ʱ ,º¯Êý y=
1 µÃֵΪ 1¡¢
x 2
3£®µ± x=-1 ʱ ,º¯Êý y=
1 µÃֵΪ 1¡¢
2 x 3
֪ʶµã 4£º»ù±¾º¯ÊýµÃ¸ÅÄî¼°ÐÔÖÊ
1£®º¯Êý y=-8x ¾ÍÊÇÒ»´Îº¯Êý¡¢ 2£®º¯Êý y=4x+1 ¾ÍÊÇÕý±ÈÀýº¯Êý¡¢ 3£®º¯Êý y
1
2
x ¾ÍÊÇ·´±ÈÀýº¯Êý¡¢ 4£®Å×ÎïÏß y=-3(x-2) 2-5 µÃ¿ª¿ÚÏòÏ¡¢ 5£®Å×ÎïÏß y=4(x-3) 2 -10 µÃ¶Ô³ÆÖá¾ÍÊÇ x=3 ¡¢ 6£®Å×ÎïÏß y
1 (1,2) ¡¢
2
( x 1) 2 2 µÃ¶¥µã×ø±ê¾ÍÊÇ
7£®·´±ÈÀýº¯Êý y
2
µÃͼÏóÔÚµÚÒ»¡¢ÈýÏóÏÞ¡¢ x
֪ʶµã 5£ºÊý¾ÝµÃƽ¾ùÊýÖÐλÊýÓëÖÚÊý
1£®Êý¾Ý 13,10,12,8,7 µÃƽ¾ùÊý¾ÍÊÇ 10¡¢ 2£®Êý¾Ý 3,4,2,4,4 µÃÖÚÊý¾ÍÊÇ 4¡¢ 3£®Êý¾Ý 1£¬ 2£¬ 3£¬ 4£¬ 5 µÃÖÐλÊý¾ÍÊÇ 3¡¢
֪ʶµã 6£ºÌØÊâÈý½Çº¯ÊýÖµ
1£® cos30¡ã =
3 ¡¢
2
2£® sin 260¡ã+ cos260¡ã = 1¡¢ 3£® 2sin30¡ã + tan45¡ã = 2¡¢ 4£® tan45¡ã = 1 ¡¢
5£® cos60¡ã + sin30 ¡ã= 1¡¢
֪ʶµã 7£ºÔ²µÃ»ù±¾ÐÔÖÊ
¾«Æ·×ÊÁÏ ¾«Æ·Ñ§Ï°×ÊÁÏ µÚ 1 Ò³£¬¹² 22 Ò³
1£®°ëÔ²»òÖ±¾¶Ëù¶ÔµÃÔ²ÖܽǾÍÊÇÖ±½Ç¡¢ 2£®ÈÎÒâÒ»¸öÈý½ÇÐÎÒ»¶¨ÓÐÒ»¸öÍâ½ÓÔ²¡¢
3£®ÔÚͬһƽÃæÄÚ£¬µ½¶¨µãµÃ¾àÀëµÈÓÚ¶¨³¤µÃµãµÃ¹ì¼££¬¾ÍÊÇÒÔ¶¨µãΪԲÐÄ£¬¶¨³¤Îª°ë¾¶µÃÔ²¡¢ 4£®ÔÚͬԲ»òµÈÔ²ÖУ¬ÏàµÈµÃÔ²ÐĽÇËù¶ÔµÃ»¡ÏàµÈ¡¢ 5£®Í¬»¡Ëù¶ÔµÃÔ²ÖܽǵÈÓÚÔ²ÐĽǵÃÒ»°ë¡¢ 6£®Í¬Ô²»òµÈÔ²µÃ°ë¾¶ÏàµÈ¡¢ 7£®¹ýÈý¸öµãÒ»¶¨¿ÉÒÔ×÷Ò»¸öÔ²¡¢ 8£®³¤¶ÈÏàµÈµÃÁ½Ìõ»¡¾ÍÊǵȻ¡¡¢
9£®ÔÚͬԲ»òµÈÔ²ÖУ¬ÏàµÈµÃÔ²ÐĽÇËù¶ÔµÃ»¡ÏàµÈ¡¢ 10£®¾¹ýÔ²ÐÄƽ·ÖÏÒµÃÖ±¾¶´¹Ö±ÓÚÏÒ¡£
֪ʶµã 8£ºÖ±ÏßÓëÔ²µÃλÖùØϵ
1£®Ö±ÏßÓëÔ²ÓÐΨһ¹«¹²µãʱ
,½Ð×öÖ±ÏßÓëÔ²ÏàÇС¢
2£®Èý½ÇÐεÃÍâ½ÓÔ²µÃÔ²ÐĽÐ×öÈý½ÇÐεÃÍâÐÄ¡¢ 3£®ÏÒÇнǵÈÓÚËù¼ÐµÃ»¡Ëù¶ÔµÃÔ²ÐĽǡ¢ 4£®Èý½ÇÐεÃÄÚÇÐÔ²µÃÔ²ÐĽÐ×öÈý½ÇÐεÃÄÚÐÄ¡¢ 5£®´¹Ö±Óڰ뾶µÃÖ±Ïß±ØΪԲµÃÇÐÏß¡¢
6£®¹ý°ë¾¶µÃÍâ¶Ëµã²¢ÇÒ´¹Ö±Óڰ뾶µÃÖ±Ïß¾ÍÊÇÔ²µÃÇÐÏß¡¢ 7£®´¹Ö±Óڰ뾶µÃÖ±Ïß¾ÍÊÇÔ²µÃÇÐÏß¡¢ 8£®Ô²µÃÇÐÏß´¹Ö±ÓÚ¹ýÇеãµÃ°ë¾¶¡¢
֪ʶµã 9£ºÔ²ÓëÔ²µÃλÖùØϵ
1£®Á½¸öÔ²ÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µãʱ
,½Ð×öÕâÁ½¸öÔ²ÍâÇС¢
2£®ÏཻÁ½Ô²µÃÁ¬ÐÄÏß´¹Ö±Æ½·Ö¹«¹²ÏÒ¡¢
3£®Á½¸öÔ²ÓÐÁ½¸ö¹«¹²µãʱ ,½Ð×öÕâÁ½¸öÔ²Ïཻ¡¢ 4£®Á½¸öÔ²ÄÚÇÐʱ ,ÕâÁ½¸öÔ²µÃ¹«ÇÐÏßÖ»ÓÐÒ»Ìõ¡¢ 5£®ÏàÇÐÁ½Ô²µÃÁ¬ÐÄÏ߱عýÇе㡢
֪ʶµã 10£ºÕý¶à±ßÐλù±¾ÐÔÖÊ
1£®ÕýÁù±ßÐεÃÖÐÐĽÇΪ 60¡ã¡¢
2£®¾ØÐξÍÊÇÕý¶à±ßÐΡ¢
3£®Õý¶à±ßÐζ¼¾ÍÊÇÖá¶Ô³ÆͼÐΡ¢ 4£®Õý¶à±ßÐζ¼¾ÍÊÇÖÐÐĶԳÆͼÐΡ¢
֪ʶµã 11£ºÒ»Ôª¶þ´Î·½³ÌµÃ½â
1£®·½³Ì 2 4 0 µÃ¸ùΪ¡¢ A £® x=2 x
B£® x=-2 C£® x1=2,x2=-2
D£® x=4 2£®·½³Ì x 2
-1=0 µÃÁ½¸ùΪ
¡¢ A £® x=1 B £®x=-1
C£® x 1=1,x 2=-1 D £® x=2 3£®·½³Ì£¨ x-3£©£¨ x+4 £© =0 µÃÁ½¸ùΪ ¡¢
A ¡¢ x1=-3,x 2=4 B ¡¢x1 =-3,x2 =-4
C¡¢x 1=3,x2=4
D ¡¢ x 1=3,x2=-4
4£®·½³Ì x(x-2)=0 µÃÁ½¸ùΪ ¡¢
A £® x1=0,x2=2
B£®x 1=1,x 2=2
C£® x 1=0,x2 =-2 D £®x 1=1,x2 =-2
5£®·½³Ì x 2-9=0 µÃÁ½¸ùΪ ¡¢
A £® x=3
B £®x=-3
C£® x1=3,x 2=-3
D£® x1=+ 3 ,x2=- 3
¾«Æ·×ÊÁÏ ¾«Æ·Ñ§Ï°×ÊÁÏ µÚ 2 Ò³£¬¹² 22 Ò³
֪ʶµã 12£º·½³Ì½âµÃÇé¿ö¼°»»Ôª·¨
1£®Ò»Ôª¶þ´Î·½³Ì 4 x 2
3x 2 0 µÃ¸ùµÃÇé¿ö¾ÍÊÇ
¡¢
A ¡¢ÓÐÁ½¸öÏàµÈµÃʵÊý¸ù B¡¢ÓÐÁ½¸ö²»ÏàµÈµÃʵÊý¸ù
C¡¢Ö»ÓÐÒ»¸öʵÊý¸ù D¡¢Ã»ÓÐʵÊý¸ù
2£®²»½â·½³Ì ,ÅÐ±ð·½³Ì 3x2-5x+3=0 µÃ¸ùµÃÇé¿ö¾ÍÊÇ
¡¢
A ¡¢ÓÐÁ½¸öÏàµÈµÃʵÊý¸ù B¡¢ ÓÐÁ½¸ö²»ÏàµÈµÃʵÊý¸ù C¡¢Ö»ÓÐÒ»¸öʵÊý¸ù D¡¢ ûÓÐʵÊý¸ù
3£®²»½â·½³Ì ,ÅÐ±ð·½³Ì 3x2+4x+2=0 µÃ¸ùµÃÇé¿ö¾ÍÊÇ
¡¢
A ¡¢ÓÐÁ½¸öÏàµÈµÃʵÊý¸ù B¡¢ ÓÐÁ½¸ö²»ÏàµÈµÃʵÊý¸ù C¡¢Ö»ÓÐÒ»¸öʵÊý¸ù D¡¢ ûÓÐʵÊý¸ù
4£®²»½â·½³Ì ,Åб𷽳Ì
4x2+4x-1=0 µÃ¸ùµÃÇé¿ö¾ÍÊÇ
A ¡¢ÓÐÁ½¸öÏàµÈµÃʵÊý¸ù
¡¢
B¡¢ÓÐÁ½¸ö²»ÏàµÈµÃʵÊý¸ù
C¡¢Ö»ÓÐÒ»¸öʵÊý¸ù
D¡¢Ã»ÓÐʵÊý¸ù
5£®²»½â·½³Ì ,ÅÐ±ð·½³Ì A ¡¢ÓÐÁ½¸öÏàµÈµÃʵÊý¸ù
5x2
-7x+5=0 µÃ¸ùµÃÇé¿ö¾ÍÊÇ
¡¢
C¡¢Ö»ÓÐÒ»¸öʵÊý¸ù
B¡¢ ÓÐÁ½¸ö²»ÏàµÈµÃʵÊý¸ù 6£®²»½â·½³Ì ,Åб𷽳Ì
D¡¢ ûÓÐʵÊý¸ù µÃ¸ùµÃÇéA ¡¢ÓÐÁ½¸öÏàµÈµÃʵÊý¸ù 5x2
+7x=-5 ¿ö¾ÍÊÇ ÓÐÁ½¸ö²»ÏàµÈ¡¢
C¡¢Ö»ÓÐÒ»¸öʵÊý¸ù B¡¢ µÃʵÊý¸ù ûÓÐʵÊý¸ù 7£®²»½â·½³Ì ,ÅÐ±ð·½³Ì D¡¢ µÃ¸ùµÃÇé¿ö¾ÍÊÇ ÓÐÁ½
A ¡¢ÓÐÁ½¸öÏàµÈµÃʵÊý¸ù x 2
+4x+2=0 ¸ö²»ÏàµÈµÃʵÊý¸ù
¡¢
C¡¢Ö»ÓÐÒ»¸öʵÊý¸ù
B¡¢ ûÓÐʵÊý¸ù D¡¢
8¡¢ ²»½â·½³Ì ,ÅжϷ½³Ì 5y 2
+1=2 5 y µÃ¸ùµÃÇé¿ö¾ÍÊÇ A ¡¢ÓÐÁ½¸öÏàµÈµÃʵÊý¸ù B¡¢ ÓÐÁ½¸ö²»ÏàµÈµÃʵÊý¸ù
C¡¢Ö»ÓÐÒ»¸öʵÊý¸ù D¡¢ ûÓÐʵÊý¸ù
9¡¢ Óà »» Ôª ·¨ ½â·½ ³Ì
x 2
5(x 3) x 3
x
2
4 ʱ, Áî x
2
x 3
= y,ÓÚ¾ÍÊÇÔ·½³Ì±äΪ
¡¢A ¡¢ y 2
-5y+4=0
B¡¢ y 2
-5y-4=0 C¡¢ y 2
-4y-5=0
D¡¢ y 2
+4y-5=0
2
10¡¢ Óû»Ôª·¨½â·½³Ì
x
5( x 3) ʱ,Áî
x 3 x 3
x
2
4 x
2
= y,ÓÚ¾ÍÊÇÔ·½³Ì±äΪ ¡¢
A ¡¢ 5y 2
-4y+1=0 B¡¢ 5y 2
-4y-1=0 C¡¢ -5y 2
-4y-1=0
D ¡¢ -5y 2
-4y-1=0
11¡¢ Óû»Ôª·¨½â·½³Ì ( x
2
x
x 1
)-5(
x 1
)+6=0 ʱ£¬Éè
x
x 1
=y£¬ÔòÔ·½³Ì»¯Îª¹ØÓÚA ¡¢ y2
+5y+6=0
B¡¢ y 2
-5y+6=0
C¡¢y 2
+5y-6=0 D¡¢ y2
-5y-6=0
֪ʶµã 13£º×Ô±äÁ¿µÃÈ¡Öµ·¶Î§
1£®º¯Êý y x 2 ÖУ¬×Ô±äÁ¿ x µÃÈ¡Öµ·¶Î§¾ÍÊÇ
¡¢
A ¡¢ x¡Ù2
B¡¢ x¡Ü -2 C¡¢ x¡Ý -2 D ¡¢x¡Ù -2
¾«Æ·×ÊÁÏ ¾«Æ·Ñ§Ï°×ÊÁÏ y µÃ·½³Ì¾ÍÊÇ ¡¢
µÚ 3 Ò³£¬¹² 22 Ò³