ºÃÎĵµ - רҵÎÄÊéд×÷·¶ÎÄ·þÎñ×ÊÁÏ·ÖÏíÍøÕ¾

×îÐÂ×îÈ«Ãæ³õÖÐÊýѧ֪ʶµã×ܽá(Ê·ÉÏ×îÈ«)(¾«»ª°æ)

ÓÉ ÌìÏ ·ÖÏí ʱ¼ä£º ¼ÓÈëÊÕ²Ø ÎÒҪͶ¸å µãÔÞ

֪ʶµã 1£ºÒ»Ôª¶þ´Î·½³ÌµÃ»ù±¾¸ÅÄî

1£®Ò»Ôª¶þ´Î·½³Ì 3x2

+5x-2=0 µÃ³£ÊýÏî¾ÍÊÇ -2¡¢

2£®Ò»Ôª¶þ´Î·½³Ì 3x2+4x-2=0 µÃÒ»´ÎÏîϵÊýΪ 4£¬³£ÊýÏî¾ÍÊÇ -2¡¢ 3£®Ò»Ôª¶þ´Î·½³Ì 3x2-5x-7=0 µÃ¶þ´ÎÏîϵÊýΪ 3£¬³£ÊýÏî¾ÍÊÇ -7¡¢ 4£®°Ñ·½³Ì 3x(x-1)-2=-4x »¯ÎªÒ»°ãʽΪ 3x2

-x-2=0 ¡¢

֪ʶµã 2£ºÖ±½Ç×ø±êϵÓëµãµÃλÖÃ

1£®Ö±½Ç×ø±êϵÖУ¬µã A £¨3£¬

0£©ÔÚ y ÖáÉÏ¡£ 2£®Ö±½Ç×ø±êϵÖУ¬ x ÖáÉϵÃÈÎÒâµãµÃºá×ø±êΪ 0¡¢

3£®Ö±½Ç×ø±êϵÖУ¬µã A £¨1£¬

1£©ÔÚµÚÒ»ÏóÏÞ¡¢ 4£®Ö±½Ç×ø±êϵÖУ¬µã A £¨-2£¬

3£©ÔÚµÚËÄÏóÏÞ¡¢ 5£®Ö±½Ç×ø±êϵÖУ¬µã A £¨-2£¬ 1£©ÔÚµÚ¶þÏóÏÞ¡¢

֪ʶµã 3£ºÒÑÖª×Ô±äÁ¿µÃÖµÇóº¯ÊýÖµ

1£®µ± x=2 ʱ ,º¯Êý y= 2x 3 µÃֵΪ 1¡¢ 2£®µ± x=3 ʱ ,º¯Êý y=

1 µÃֵΪ 1¡¢

x 2

3£®µ± x=-1 ʱ ,º¯Êý y=

1 µÃֵΪ 1¡¢

2 x 3

֪ʶµã 4£º»ù±¾º¯ÊýµÃ¸ÅÄî¼°ÐÔÖÊ

1£®º¯Êý y=-8x ¾ÍÊÇÒ»´Îº¯Êý¡¢ 2£®º¯Êý y=4x+1 ¾ÍÊÇÕý±ÈÀýº¯Êý¡¢ 3£®º¯Êý y

1

2

x ¾ÍÊÇ·´±ÈÀýº¯Êý¡¢ 4£®Å×ÎïÏß y=-3(x-2) 2-5 µÃ¿ª¿ÚÏòÏ¡¢ 5£®Å×ÎïÏß y=4(x-3) 2 -10 µÃ¶Ô³ÆÖá¾ÍÊÇ x=3 ¡¢ 6£®Å×ÎïÏß y

1 (1,2) ¡¢

2

( x 1) 2 2 µÃ¶¥µã×ø±ê¾ÍÊÇ

7£®·´±ÈÀýº¯Êý y

2

µÃͼÏóÔÚµÚÒ»¡¢ÈýÏóÏÞ¡¢ x

֪ʶµã 5£ºÊý¾ÝµÃƽ¾ùÊýÖÐλÊýÓëÖÚÊý

1£®Êý¾Ý 13,10,12,8,7 µÃƽ¾ùÊý¾ÍÊÇ 10¡¢ 2£®Êý¾Ý 3,4,2,4,4 µÃÖÚÊý¾ÍÊÇ 4¡¢ 3£®Êý¾Ý 1£¬ 2£¬ 3£¬ 4£¬ 5 µÃÖÐλÊý¾ÍÊÇ 3¡¢

֪ʶµã 6£ºÌØÊâÈý½Çº¯ÊýÖµ

1£® cos30¡ã =

3 ¡¢

2

2£® sin 260¡ã+ cos260¡ã = 1¡¢ 3£® 2sin30¡ã + tan45¡ã = 2¡¢ 4£® tan45¡ã = 1 ¡¢

5£® cos60¡ã + sin30 ¡ã= 1¡¢

֪ʶµã 7£ºÔ²µÃ»ù±¾ÐÔÖÊ

¾«Æ·×ÊÁÏ ¾«Æ·Ñ§Ï°×ÊÁÏ µÚ 1 Ò³£¬¹² 22 Ò³

1£®°ëÔ²»òÖ±¾¶Ëù¶ÔµÃÔ²ÖܽǾÍÊÇÖ±½Ç¡¢ 2£®ÈÎÒâÒ»¸öÈý½ÇÐÎÒ»¶¨ÓÐÒ»¸öÍâ½ÓÔ²¡¢

3£®ÔÚͬһƽÃæÄÚ£¬µ½¶¨µãµÃ¾àÀëµÈÓÚ¶¨³¤µÃµãµÃ¹ì¼££¬¾ÍÊÇÒÔ¶¨µãΪԲÐÄ£¬¶¨³¤Îª°ë¾¶µÃÔ²¡¢ 4£®ÔÚͬԲ»òµÈÔ²ÖУ¬ÏàµÈµÃÔ²ÐĽÇËù¶ÔµÃ»¡ÏàµÈ¡¢ 5£®Í¬»¡Ëù¶ÔµÃÔ²ÖܽǵÈÓÚÔ²ÐĽǵÃÒ»°ë¡¢ 6£®Í¬Ô²»òµÈÔ²µÃ°ë¾¶ÏàµÈ¡¢ 7£®¹ýÈý¸öµãÒ»¶¨¿ÉÒÔ×÷Ò»¸öÔ²¡¢ 8£®³¤¶ÈÏàµÈµÃÁ½Ìõ»¡¾ÍÊǵȻ¡¡¢

9£®ÔÚͬԲ»òµÈÔ²ÖУ¬ÏàµÈµÃÔ²ÐĽÇËù¶ÔµÃ»¡ÏàµÈ¡¢ 10£®¾­¹ýÔ²ÐÄƽ·ÖÏÒµÃÖ±¾¶´¹Ö±ÓÚÏÒ¡£

֪ʶµã 8£ºÖ±ÏßÓëÔ²µÃλÖùØϵ

1£®Ö±ÏßÓëÔ²ÓÐΨһ¹«¹²µãʱ

,½Ð×öÖ±ÏßÓëÔ²ÏàÇС¢

2£®Èý½ÇÐεÃÍâ½ÓÔ²µÃÔ²ÐĽÐ×öÈý½ÇÐεÃÍâÐÄ¡¢ 3£®ÏÒÇнǵÈÓÚËù¼ÐµÃ»¡Ëù¶ÔµÃÔ²ÐĽǡ¢ 4£®Èý½ÇÐεÃÄÚÇÐÔ²µÃÔ²ÐĽÐ×öÈý½ÇÐεÃÄÚÐÄ¡¢ 5£®´¹Ö±Óڰ뾶µÃÖ±Ïß±ØΪԲµÃÇÐÏß¡¢

6£®¹ý°ë¾¶µÃÍâ¶Ëµã²¢ÇÒ´¹Ö±Óڰ뾶µÃÖ±Ïß¾ÍÊÇÔ²µÃÇÐÏß¡¢ 7£®´¹Ö±Óڰ뾶µÃÖ±Ïß¾ÍÊÇÔ²µÃÇÐÏß¡¢ 8£®Ô²µÃÇÐÏß´¹Ö±ÓÚ¹ýÇеãµÃ°ë¾¶¡¢

֪ʶµã 9£ºÔ²ÓëÔ²µÃλÖùØϵ

1£®Á½¸öÔ²ÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µãʱ

,½Ð×öÕâÁ½¸öÔ²ÍâÇС¢

2£®ÏཻÁ½Ô²µÃÁ¬ÐÄÏß´¹Ö±Æ½·Ö¹«¹²ÏÒ¡¢

3£®Á½¸öÔ²ÓÐÁ½¸ö¹«¹²µãʱ ,½Ð×öÕâÁ½¸öÔ²Ïཻ¡¢ 4£®Á½¸öÔ²ÄÚÇÐʱ ,ÕâÁ½¸öÔ²µÃ¹«ÇÐÏßÖ»ÓÐÒ»Ìõ¡¢ 5£®ÏàÇÐÁ½Ô²µÃÁ¬ÐÄÏ߱عýÇе㡢

֪ʶµã 10£ºÕý¶à±ßÐλù±¾ÐÔÖÊ

1£®ÕýÁù±ßÐεÃÖÐÐĽÇΪ 60¡ã¡¢

2£®¾ØÐξÍÊÇÕý¶à±ßÐΡ¢

3£®Õý¶à±ßÐζ¼¾ÍÊÇÖá¶Ô³ÆͼÐΡ¢ 4£®Õý¶à±ßÐζ¼¾ÍÊÇÖÐÐĶԳÆͼÐΡ¢

֪ʶµã 11£ºÒ»Ôª¶þ´Î·½³ÌµÃ½â

1£®·½³Ì 2 4 0 µÃ¸ùΪ¡¢ A £® x=2 x

B£® x=-2 C£® x1=2,x2=-2

D£® x=4 2£®·½³Ì x 2

-1=0 µÃÁ½¸ùΪ

¡¢ A £® x=1 B £®x=-1

C£® x 1=1,x 2=-1 D £® x=2 3£®·½³Ì£¨ x-3£©£¨ x+4 £© =0 µÃÁ½¸ùΪ ¡¢

A ¡¢ x1=-3,x 2=4 B ¡¢x1 =-3,x2 =-4

C¡¢x 1=3,x2=4

D ¡¢ x 1=3,x2=-4

4£®·½³Ì x(x-2)=0 µÃÁ½¸ùΪ ¡¢

A £® x1=0,x2=2

B£®x 1=1,x 2=2

C£® x 1=0,x2 =-2 D £®x 1=1,x2 =-2

5£®·½³Ì x 2-9=0 µÃÁ½¸ùΪ ¡¢

A £® x=3

B £®x=-3

C£® x1=3,x 2=-3

D£® x1=+ 3 ,x2=- 3

¾«Æ·×ÊÁÏ ¾«Æ·Ñ§Ï°×ÊÁÏ µÚ 2 Ò³£¬¹² 22 Ò³

֪ʶµã 12£º·½³Ì½âµÃÇé¿ö¼°»»Ôª·¨

1£®Ò»Ôª¶þ´Î·½³Ì 4 x 2

3x 2 0 µÃ¸ùµÃÇé¿ö¾ÍÊÇ

¡¢

A ¡¢ÓÐÁ½¸öÏàµÈµÃʵÊý¸ù B¡¢ÓÐÁ½¸ö²»ÏàµÈµÃʵÊý¸ù

C¡¢Ö»ÓÐÒ»¸öʵÊý¸ù D¡¢Ã»ÓÐʵÊý¸ù

2£®²»½â·½³Ì ,ÅÐ±ð·½³Ì 3x2-5x+3=0 µÃ¸ùµÃÇé¿ö¾ÍÊÇ

¡¢

A ¡¢ÓÐÁ½¸öÏàµÈµÃʵÊý¸ù B¡¢ ÓÐÁ½¸ö²»ÏàµÈµÃʵÊý¸ù C¡¢Ö»ÓÐÒ»¸öʵÊý¸ù D¡¢ ûÓÐʵÊý¸ù

3£®²»½â·½³Ì ,ÅÐ±ð·½³Ì 3x2+4x+2=0 µÃ¸ùµÃÇé¿ö¾ÍÊÇ

¡¢

A ¡¢ÓÐÁ½¸öÏàµÈµÃʵÊý¸ù B¡¢ ÓÐÁ½¸ö²»ÏàµÈµÃʵÊý¸ù C¡¢Ö»ÓÐÒ»¸öʵÊý¸ù D¡¢ ûÓÐʵÊý¸ù

4£®²»½â·½³Ì ,Åб𷽳Ì

4x2+4x-1=0 µÃ¸ùµÃÇé¿ö¾ÍÊÇ

A ¡¢ÓÐÁ½¸öÏàµÈµÃʵÊý¸ù

¡¢

B¡¢ÓÐÁ½¸ö²»ÏàµÈµÃʵÊý¸ù

C¡¢Ö»ÓÐÒ»¸öʵÊý¸ù

D¡¢Ã»ÓÐʵÊý¸ù

5£®²»½â·½³Ì ,ÅÐ±ð·½³Ì A ¡¢ÓÐÁ½¸öÏàµÈµÃʵÊý¸ù

5x2

-7x+5=0 µÃ¸ùµÃÇé¿ö¾ÍÊÇ

¡¢

C¡¢Ö»ÓÐÒ»¸öʵÊý¸ù

B¡¢ ÓÐÁ½¸ö²»ÏàµÈµÃʵÊý¸ù 6£®²»½â·½³Ì ,Åб𷽳Ì

D¡¢ ûÓÐʵÊý¸ù µÃ¸ùµÃÇéA ¡¢ÓÐÁ½¸öÏàµÈµÃʵÊý¸ù 5x2

+7x=-5 ¿ö¾ÍÊÇ ÓÐÁ½¸ö²»ÏàµÈ¡¢

C¡¢Ö»ÓÐÒ»¸öʵÊý¸ù B¡¢ µÃʵÊý¸ù ûÓÐʵÊý¸ù 7£®²»½â·½³Ì ,ÅÐ±ð·½³Ì D¡¢ µÃ¸ùµÃÇé¿ö¾ÍÊÇ ÓÐÁ½

A ¡¢ÓÐÁ½¸öÏàµÈµÃʵÊý¸ù x 2

+4x+2=0 ¸ö²»ÏàµÈµÃʵÊý¸ù

¡¢

C¡¢Ö»ÓÐÒ»¸öʵÊý¸ù

B¡¢ ûÓÐʵÊý¸ù D¡¢

8¡¢ ²»½â·½³Ì ,ÅжϷ½³Ì 5y 2

+1=2 5 y µÃ¸ùµÃÇé¿ö¾ÍÊÇ A ¡¢ÓÐÁ½¸öÏàµÈµÃʵÊý¸ù B¡¢ ÓÐÁ½¸ö²»ÏàµÈµÃʵÊý¸ù

C¡¢Ö»ÓÐÒ»¸öʵÊý¸ù D¡¢ ûÓÐʵÊý¸ù

9¡¢ Óà »» Ôª ·¨ ½â·½ ³Ì

x 2

5(x 3) x 3

x

2

4 ʱ, Áî x

2

x 3

= y,ÓÚ¾ÍÊÇÔ­·½³Ì±äΪ

¡¢A ¡¢ y 2

-5y+4=0

B¡¢ y 2

-5y-4=0 C¡¢ y 2

-4y-5=0

D¡¢ y 2

+4y-5=0

2

10¡¢ Óû»Ôª·¨½â·½³Ì

x

5( x 3) ʱ,Áî

x 3 x 3

x

2

4 x

2

= y,ÓÚ¾ÍÊÇÔ­·½³Ì±äΪ ¡¢

A ¡¢ 5y 2

-4y+1=0 B¡¢ 5y 2

-4y-1=0 C¡¢ -5y 2

-4y-1=0

D ¡¢ -5y 2

-4y-1=0

11¡¢ Óû»Ôª·¨½â·½³Ì ( x

2

x

x 1

)-5(

x 1

)+6=0 ʱ£¬Éè

x

x 1

=y£¬ÔòÔ­·½³Ì»¯Îª¹ØÓÚA ¡¢ y2

+5y+6=0

B¡¢ y 2

-5y+6=0

C¡¢y 2

+5y-6=0 D¡¢ y2

-5y-6=0

֪ʶµã 13£º×Ô±äÁ¿µÃÈ¡Öµ·¶Î§

1£®º¯Êý y x 2 ÖУ¬×Ô±äÁ¿ x µÃÈ¡Öµ·¶Î§¾ÍÊÇ

¡¢

A ¡¢ x¡Ù2

B¡¢ x¡Ü -2 C¡¢ x¡Ý -2 D ¡¢x¡Ù -2

¾«Æ·×ÊÁÏ ¾«Æ·Ñ§Ï°×ÊÁÏ y µÃ·½³Ì¾ÍÊÇ ¡¢

µÚ 3 Ò³£¬¹² 22 Ò³

×îÐÂ×îÈ«Ãæ³õÖÐÊýѧ֪ʶµã×ܽá(Ê·ÉÏ×îÈ«)(¾«»ª°æ)

֪ʶµã1£ºÒ»Ôª¶þ´Î·½³ÌµÃ»ù±¾¸ÅÄî1£®Ò»Ôª¶þ´Î·½³Ì3x2+5x-2=0µÃ³£ÊýÏî¾ÍÊÇ-2¡¢2£®Ò»Ôª¶þ´Î·½³Ì3x2+4x-2=0µÃÒ»´ÎÏîϵÊýΪ4£¬³£ÊýÏî¾ÍÊÇ-2¡¢3£®Ò»Ôª¶þ´Î·½³Ì3x2-5x-7=0µÃ¶þ´ÎÏîϵÊýΪ3£¬³£ÊýÏî¾ÍÊÇ-7¡¢4£®°Ñ·½³Ì3x(x-1)-2=-4x»¯ÎªÒ»°ãʽΪ3x2-x-2=0¡¢<
ÍƼö¶È£º
µã»÷ÏÂÔØÎĵµÎĵµÎªdoc¸ñʽ
7ypyt89hay35m4y31ezc5v45r56fh1008xz
ÁìÈ¡¸£Àû

΢ÐÅɨÂëÁìÈ¡¸£Àû

΢ÐÅɨÂë·ÖÏí