好文档 - 专业文书写作范文服务资料分享网站

高中数学必修三《概率的基本性质》优秀教学设计

天下 分享 时间: 加入收藏 我要投稿 点赞

3.1.3 概率的基本性质

1、事件间的关系及运算 2、概率的基本性质 1

2

3

课时安排 1课时 教学过程

一、导入新课: 概

二、新课讲解:

Ⅰ、事件的关系与运算 1、提出问题

在掷骰子试验中,可以定义许多事件如:C1={出现1点},C2={出现2点},C3={出现3点},C4={出现4点},C5={出现5点},C6={出现6点},D1={出现的点数不大于1},D2={出现的点数大于3},D3={出现的点数小于5},E={出现的点数小于7},F={出现的点数大于6},G={出现的点数为偶数},H={出现的点数为奇数},…… 类比集合与集合的关系、运算说明这些事件的关系和运算,并定义一些新的事件. (1)如果事件C1发生,则一定发生的事件有哪些?反之,成立吗? (2)如果事件C2发生或C4发生或C6发生,就意味着哪个事件发生? (3)如果事件D2与事件H同时发生,就意味着哪个事件发生? (4)事件D3与事件F能同时发生吗?

(5)事件G与事件H能同时发生吗?它们两个事件有什么关系?

2、活动:学生思考或交流,教师提示点拨,事件与事件的关系要判断准确. 3、讨论结果:

(1)如果事件C1发生,则一定发生的事件有D1,E,D3,H,反之,如果事件D1,E,D3,H分别成立,能推出事件C1发生的只有D1.

(2)如果事件C2发生或C4发生或C6发生,就意味着事件G发生. (3)如果事件D2与事件H同时发生,就意味着C5事件发生. (4)事件D3与事件F不能同时发生.

(5)事件G与事件H不能同时发生,但必有一个发生. 4、总结:由此我们得到事件A,B的关系和运算如下:

①如果事件A发生,则事件B一定发生,这时我们说事件B包含事件A(或事件A包含于事件B),记为B?A(或A?B),不可能事件记为?,任何事件都包含不可能事件. ②如果事件A发生,则事件B一定发生,反之也成立,(若B?A同时A?B),我们说这两个事件相等,即A=B.如C1=D1.

③如果某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与B的并事件(或和事件),记为A∪B或A+B.

④如果某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与B的交事件(或积事件),记为A∩B或AB.

⑤如果A∩B为不可能事件(A∩B=?),那么称事件A与事件B互斥,即事件A与事件B在任何一次试验中不会同时发生.

3第 1 页 共 3 页

⑥如果A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件,即事件A与事件B在一次试验中有且仅有一个发生. Ⅱ、概率的几个基本性质 1、提出以下问题:

(1)概率的取值范围是多少? (2)必然事件的概率是多少? (3)不可能事件的概率是多少?

(4)互斥事件的和事件概率应怎样计算? (5)对立事件之间概率是怎样的关系呢? 2、活动:

学生根据试验的结果,结合自己对各种事件的理解,教师引导学生,根据概率的意义: (1)由于事件的频数总是小于或等于试验的次数,所以,频率在0—1之间,因而概率的取值范围也在0—1之间.

(2)必然事件是在试验中一定要发生的事件,所以频率为1,因而概率是1. (3)不可能事件是在试验中一定不发生的事件,所以频率为0,因而概率是0.

(4)当事件A与事件B互斥时,A∪B发生的频数等于事件A发生的频数与事件B发生的频数之和,互斥事件的概率等于互斥事件分别发生的概率之和. (5)事件A与事件B互为对立事件,A∩B为不可能事件,A∪B为必然事件,则A∪B的频率为1,因而概率是1,由(4)可知事件B的概率是1与事件A发生的概率的差. 3、讨论结果:

(1)概率的取值范围是0—1之间,即0≤P(A)≤1.

(2)必然事件的概率是1.如在掷骰子试验中,E={出现的点数小于7},因此P(E)=1. (3)不可能事件的概率是0,如在掷骰子试验中,F={出现的点数大于6},因此P(F)=0.

(4)当事件A与事件B互斥时,A∪B发生的频数等于事件A发生的频数与事件B发生的频数之和,互斥事件的概率等于互斥事件分别发生的概率之和,即P(A∪B)=P(A)+P(B),这就是概率的加法公式.也称互斥事件的概率的加法公式.

(5)事件A与事件B互为对立事件,A∩B为不可能事件,A∪B为必然事件,P(A∪B)=1.所以1=P(A)+P(B),P(B)=1-P(A),P(A)=1-P(B).如在掷骰子试验中,事件G={出现的点数为偶数}与H={出现的点数为奇数}互为对立事件,因此P(G)=1-P(H). 三、例题讲解:

例: 如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是(事件B)的概率是

1,取到方块41,问: 4(1)取到红色牌(事件C)的概率是多少? (2)取到黑色牌(事件D)的概率是多少?

活动:学生先思考或交流,教师及时指导提示,事件C是事件A与事件B的并,且A与B互斥,因此可用互斥事件的概率和公式求解,事件C与事件D是对立事件,因此P(D)=1-P(C). 解:(1)因为C=A∪B,且A与B不会同时发生,所以事件A与事件B互斥,根据概率的加法公式得P(C)=P(A)+P(B)=

1. 21. 2(2)事件C与事件D互斥,且C∪D为必然事件,因此事件C与事件D是对立事件,P(D)=1-P(C)=四、课堂练习:

教材第121页练习:1、2、3、4、5 五、课堂小结:

3第 2 页 共 3 页

1.概率的基本性质是学习概率的基础.不可能事件一定不出现,因此其概率为0,必然事件一定发生,因此其概率为1.当事件A与事件B互斥时,A∪B发生的概率等于A发生的概率与B发生的概率的和,从而有公式P(A∪B)=P(A)+P(B);对立事件是指事件A与事件B有且仅有一个发生.

2.在利用概率的性质时,一定要注意互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形:①事件A发生B不发生;②事件B发生事件A不发生,对立事件是互斥事件的特殊情形. 六、课后作业:

习题3.1A组5,B组1、2. 预习教材3.2.1 板书设计

3.1.3 概率的基本性质

Ⅰ、事件的关系与运算 探究与例题 Ⅱ、概率的几个基本

3第 3 页 共 3 页

高中数学必修三《概率的基本性质》优秀教学设计

3.1.3概率的基本性质1、事件间的关系及运算2、概率的基本性质123课时安排1课时教学过程一、导入新课:概
推荐度:
点击下载文档文档为doc格式
7ym9f7454q9s4tl8lgrm6o2vt5lzj600csb
领取福利

微信扫码领取福利

微信扫码分享