不属于人工智能的学派是( ) 符号主义 机会主义 行为主义 连接主义 如果问题存在最优解,则下面几种搜索算法中,必然可以得到该最优解的是:( ) 启发式搜索 深度优先搜索 有界深度优先搜索 广度优先搜索 在启发式搜索中,通常用___________来表示启发性信息:( ) 剪枝函数 启发函数 匹配函数 似然函数 ~(A B) <=>~A ~B称为( ) 结合律 分配律 吸收律 摩根律 以下哪种算法是“智能程度相对比较高”的算法。( ) 广度优先搜索 深度优先搜索 启发式搜索 有界深度优先搜索 人工智能产生于哪一年: ( ) 1957 1962 1956 1979 下列哪个不是知识表示方法: ( ) 框架法 语义网络法 状态空间法 最大匹配法 已知初始问题的描述,通过一系列变换把此问题最终变为一个子问题集合:这些子问题的解可以直接得到,从而解决了初始问题。这种知识表示法叫 ( ) 状态空间法 问题规约法 谓词逻辑法 语义网络法 下列哪部分不是专家系统的组成部分:( ) 用户 综合数据库 推理机 知识库 要想让机器具有智能,必须让机器具有知识。因此,在人工智能中有一个研究领域,主要研究计算机如何自动获取知识和技能,实现自我完善,这门研究分支学科叫:( ) 专家系统 机器学习 神经网络 模式识别 赢得“人工智能之父”桂冠的人是: ( ) 图灵 维纳 冯?诺依曼 麦卡锡 子句~P Q和P经过消解以后,得到:( ) P Q ~P P Q 机器翻译属于___________领域: ( ) 专家系统 机器博弈 自然语言理解 模式识别 专家系统也成为基于知识的系统,它的设计方法是以________和________为中心而展开的。( ) 知识库和推理机 规则库和知识库 搜索策略和推理机 规则库和搜索策略 语义网中的推理过程有_____和______两种( ) 继承和匹配 正向和反向 确定和不确定 独立和交叉 1、简述决策树学习的基本方法和步骤。 答:决策树是一种数据挖掘分类算法、是直观运用概率分析的一种图解法、是一个预测模型。 基本方法:
决策树一般由方块结点、圆形结点、方案枝、概率枝等组成,方块结点称为决策结点,由结点引出若干条细支,每条细支代表一个方案,称为方案枝;圆形结点称为状态结点,由状态结点引出若干条细支,表示不同的自然状态,称为概率枝。每条概率枝代表一种自然状态。在每条细枝上标明客观状态的内容和其出现概率。在概率枝的最末稍标明该方案在该自然状态下所达到的结果(收益值或损失值)。这样树形图由左向右,由简到繁展开,组成一个树状网络图。 步骤:
a.绘制决策树图。从左到右的顺序画决策树,此过程本身就是对决策问题的再分析过程。 b.按从右到左的顺序计算各方案的期望值,并将结果写在相应方案节点上方。期望值的计算是从右到左沿着决策树的反方向进行计算的。
c.对比各方案的期望值的大小,进行剪枝优选。在舍去备选方案枝上,用“=”记号隔断。 2、什么是知识?它有哪些特性?列举至少六种知识表示方法?
答:经过国内外学者的共同努力,目前已经有许多知识表示方法得到了深入的研究,目前使用较多的知识表示方法主要有:谓词逻辑表示法,产生式表示法、框架表示法、语义网络表示法、面向对象表示法、基于本体的知识表示法等。本文将介绍这些知识表示方法的特征和优缺点,进行一些分析和比较。
(1)词逻辑表示法。谓词逻辑表示法是指各种基于形式逻辑(ormalogic)知识表示方式,用逻辑公式描述对象、性质、状况和关系,例如“宇宙飞船在轨道上”可以描述成:(npaceshiporbit)它是人工智能领域中使用最早和最广泛的知识表示方法之一。其根本目的在于把数学中的逻辑论证符号化,能够采用数学演绎的方式,证明一个新语句是从哪些已知正确的语句推导出来的,那么也就能够断定这个新语句也是正确的。
在这种方法中,识库可以看成一组逻辑公式的集合,识库的修改是增加或删除逻辑公式。使用逻辑法表示知识,将以自然语言描述的知识通过引入谓词、函数来加以形式描述,得有关的逻辑公式,而以机器内部代码表示。在逻辑法表示下可采用归结法或其它方法进行准确的推理。
谓词逻辑表示法建立在形式逻辑的基础上,有下列优点:①谓词逻辑表示法对如何由简单说明构造复杂事物的方法有明确、统一的规定,且有效地分离了知识和处理知识的程序,构清晰;②谓词逻辑与数据库,别是与关系数据库有密切的关系;一阶谓词逻辑具有完备的逻辑推理算法;逻辑推理可以保证知识库中新旧知识在逻辑上的一致性和演绎所得结论的正确性;逻辑推理作为一种形式推理方法,依赖于任何具体领域,具有较大的通用性。
但是,词逻辑表示法也存在着下列缺点:①难于表示过程和启发式知识;②由于缺乏组织原则,得知识库难于管理;③由于是弱证明过程,当事实的数目增大时,证明过程中可能产生组合爆炸;④表示的内容与推理过程的分离,理按形式逻辑进行,容所包含的大量信息被抛弃,样使得处理过程加长、工作效率低。
谓词逻辑适合表示事物的状态、属性、概念等事实性的知识,及事物间确定的因果关系,是不能表示不确定性的知识,及推理效率很低。
(2)生式规则表示法。产生式知识表示法是常用的知识表示方式之一。它是依据人类大脑记忆模式中的各种知识之间的大量存在的因果关系,以“IFHEN”的形式,产生式规则表示出来的。这种形式的规则捕获了人类求解问题的行为特征,通过认识———行动的循环过程求解问题。一个产生式系统由规则库、综合数据库和控制机构三个基本部分组成。
产生式规则表示法具有非常明显的优点:①自然性好,产生式表示法用“If-THEN”的形式表示知识,这种表示形式与人类的判断性知识基本一致,直观,自然,便于推理;②除了对系统的总体结构、各部分相互作用的方式及规则的表示形式有明确规定以外,对系统的其它实现细节都没有具体规定,这使设计者们在开发实用系统时具有较大灵活性,可以根据需要采用适当的实现技术,特别是可以把对求解问题有意义的各种启发式知识引入到系统中;③表示的格式固定,形式单一,规则间相互独立,整个过程只是前件匹配,后件动作。匹配提供的信息只有成功与失败,匹配一般无递归,没有复杂的计算,所以系统容易建立;④由于规则库中的知识具有相同的格式,并且全局数据库可以被所有的规则访问,因此规则可以被统一处理;⑤模块性好,产生式规则是规则中最基本的知识单元,各规则之间只能通过全局数据库发生联系,不能互相调用,增加了规则的模块性,有利于对知识的增加、删除和修改;⑥产生式表示法既可以表示确定的知识单元,又可以表示不确定性知识;既有利于表示启发式知识,又可方便地表示过程性知识;既可表示领域知识,又可表示元知识。
但是,产生式规则表示法也存在着下列缺点:①推理效率低下:由于规则库中的知识都有统一格式,并且规则之间的联系必须以全局数据库为媒介,推理过程是一种反复进行的“匹配———冲突消除———执行”的过程。而且在每个推理周期,都要不断地对全部规则的条件部分进行搜索和模式匹配,从原理上讲,这种做法必然会降低推理效率,而且随着规则数量的增加,效率低的缺点会越来越突出,甚至会出现组合爆炸问题。②不直观:数据库中存放的是一条条相互独立的规则,相互之间的关系很难通过直观的方式查看;③缺乏灵活性:产生式表示的知识有一定的格式,规则之间不能直接调用,因此较难表示那些具有结构关系或层次关系的知识,也不能提供灵活的解释。