2024年普通高等学校招生全国统一考试(天津卷)
数学参考解答
一、选择题:每小题5分,满分45分.
1.C 2.A 3.A 4.B 5.C 6.D 7.D 8.B 9.D
二、填空题:每小题5分,满分30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.
10.3?2i 11.10 12.5 13.三、解答题 16.满分14分.
(Ⅰ)解:在ABC中,由余弦定理及a?212113; 14.4 15.; 63622,b?5,c?13,有
a2?b2?c22?cosC??.又因为C?(0,?),所以C?.
2ab24(Ⅱ)解:在ABC中,由正弦定理及C??4,a?22,c?13,可得sinA?asinC213?. c132133132,可得cosA?1?sinA?,进而1313(Ⅲ)解;由a?c及sinA?sin2A?2sinAcosA?125.所以,,cos2A?2cos2A?1?1313????12252172?. sin?2A???sin2Acos?cos2Asin?????4?4413213226?17.满分15分.
依题意,以C为原点,分别以CA,CB,CC1的方向为x轴,角坐标系(如图),可得C(0,0,0),y轴,轴的正方向建立空间直
A(2,0,0),B(0,2,0),C1(0,0,3),
A1(2,0,3),B1(0,2,3),D(2,0,1),E(0,0,2),M(1,1,3).
(Ⅰ)证明:依题意,C1M所以C1M?(1,1,0),B1D?(2,?2,?2),从而C1M?B1D?2?2?0?0,
?B1D.
(Ⅱ)解:依题意,CA?(2,0,0)是平面BB1E的一个法向量,EB1?(0,2,1),
?ED?(2,0,?1).设n?(x,y,z)为平面DB1E的法向量,则?设x?1,可得n?(1,?1,2).
?n?EB1?0,??n?ED?0,即??2y?z?0,不妨
2x?z?0.?30CA?n6sin?CA,n??因此有cos?CA,n??,于是. ?66|CA||n|所以,二面角B?B1E?D的正弦值为
30. 6(Ⅲ)解:依题意,AB?(?2,2,0).由(Ⅱ)知n?(1,?1,2)为平面DB1E的一个法向量,于是cosAB?n3??.
3|AB||n|3. 3所以,直线AB与平面DB1E所成角的正弦值为18.满分15分.
(Ⅰ)解:由已知可得b?3.记半焦距为c,由|OF|?|OA|可得c?b?3.又由a2?b2?c2,
22xy??1. 可得a2?18.所以,椭圆的方程为
189
(Ⅱ)解:因为直线AB与以C为圆心的圆相切于点P,所以AB?CP.依题意,直线
?y?kx?3,?设直线AB的方程为y?kx?3.由方程组?x2y2消AB和直线CP的斜率均存在.
?1,???189去
ky,可得?2k2?1?x2?12kx?0,解得x?0,或x?1222k?1.依题意,可得点B的
?12k6k2?3?坐标?因为P为线段AB的中点,点A的坐标为(0,?3),所以点P的,2?.2?2k?12k?1?坐标为??3??6k,?.由3OC?OF,得点C的坐标为(1,0),故直线CP的斜率为22?2k?12k?1??3?02332k?1,即2.又因为AB?CP,所以k?2??1,整理得6k2k?6k?12k?6k?1?12k2?112k2?3k?1?0,解得k?,或k?1.
21所以,直线AB的方程为y?x?3,或y?x?3.
219.满分15分. (Ⅰ)解:设等差数列
?an?的公差为d,等比数列?bn?的公比为q.由a1?1,
a5?5?a4?a3?,可得d?1,从而?an?的通项公式为an?n.由b1?1,b5?4?b4?b3?,
又q?0,可得q2?4q?4?0,解得q?2,从而?bn?的通项公式为bn?2n?1.
(Ⅱ)证明:由(Ⅰ)可得Sn?2Sn?1n(n?1)1,故SnSn?2?n(n?1)(n?2)(n?3),241122从而SnSn?2?Sn所以SnSn?2?(n?1)2?n?2?,??(n?1)(n?2)?0,?142?Sn2?1.
(Ⅲ)解:当n为奇数时,cn3an?2?bn??anan?2(3n?2)2n?12n?12n?1;当n为偶数时,???n(n?2)n?2ncn?an?1n?1?n. bn?12对任意的正整数n,有
?22k22k?2?22nc2k?1?????1, ???2k?1?2n?1k?1k?1?2k?1nn和
?c2k??k?1n2k?1135??2?3?k4444k?1n?2n?1. ① 4n由①得
1n13c??2k42?43?4k?1?2n?32n?1?n?1. ② 4n42?1?1??22n?14?4n?12n?1??n?n?1???n?1,从而得144441?43n12由①②得?c2k??2?4k?14456n?5c???2kn.
99?4k?14n6n?54??. 因此,?ck??c2k?1??c2k?n2n?19?49k?1k?1k?12nnnn4n6n?54??. 所以,数列?cn?的前2n项和为n2n?19?4920.满分16分.
(Ⅰ)(i)解:当k?6时,f(x)?6x3?6lnx,故f?(x)?3x2?.可得
xf(1)?1,f?(1)?9,
所以曲线y?f(x)在点(1,f(1))处的切线方程为y?1?9(x?1),即y?9x?8. (ii)解:依题意,g(x)?x3?3x2?6lnx?3,x?(0,??).从而可得x33(x?1)(x?1)??63?2g(x)?g(x)?0,解得x?1.,整理可得.令 g(x)?3x?6x??22xxx当x变化时,g?(x),g(x)的变化情况如下表:
(0,1) - ↘ 1 0 极小值 x g?(x) g(x) (1,??) + ↗ 所以,函数g(x)的单调递减区间为(0,1),单调递增区间为(1,??);g(x)的极小值为
g(1)?1,无极大值.
(Ⅱ)证明:由
f(x)?x3?klnx,得f?(x)?3x2?k.
x
对任意的x1,x2?[1,??),且x1?x2,令
x1?t(t?1),则 x2?x1?x2??f??x1??f??x2???2?f?x1??f?x2??
??3x?kk?23??x1?x2??3x12??3x2???2?x1?x2?kln1?
x1x2?x2????xx?x332?x1?x2?3x12x2?3x1x2?k?1?2??2kln1
x2?x2x1?1?3?x2t??2lnt?t3?3t2?3t?1??k???. ①
t??1令h(x)?x??2lnx,x12?1??x?[1,??).当x?1时,h(x)?1?2???1???0,由
xx?x?1t2此可得h(x)在[1,??)单调递增,所以当t?1时,h(t)?h(1),即??2lnt?0.因为x21,
t3?3t2?3t?1?(t?1)3?0,k?3,所以,
?1??1?33232x2t?3t?3t?1?kt??2lnt?(t?3t?3t?1)?3t??2lnt??????
?t??t??t2?3t2?6lnt?3?1. ② t3?1,故 t由(Ⅰ)(ii)可知,当t?1时,g(t)?g(1),即t3?3t2?6lnt?t2?3t2?6lnt?3?1?0. ③ t由①②③可得?x1?x2?f??x1??f??x2??2f?x1??f?x2??0.所以,当k?????3时,
f??x1??f??x2?f?x1??f?x2?对任意的x1,x2?[1,??),且x1?x2,有. ?2x1?x2