4.3 一次函数的图象 第2课时 一次函数的图象和性质
学习目标
1、了解正比例函数y=kx的图象的特点。 2、会作正比例函数的图象。
3、理解一次函数及其图象的有关性质。 4、能熟练地作出一次函数的图象。 学习过程
1、新课导入
上节课我们学习了如何画一次函数的图象,步骤为①列表;②描点;③连线。经过讨论我们又知道了画一次函数的图象不需要许多点,只要找两点即可,还明确了一次函数的代数表达式与图象之间的对应关系。
本节课我们进一步来研究一次函数的图象的其他性质。 2、讲授新课
(1)首先我们来研究一次函数的特例——正比例函数有关性质。 请大家在同一坐标系内作出正比例函数y=如图:
3、议一议
(1)正比例函数y=kx的图象有什么特点?(都经过原点) (2)你作正比例函数y=kx的图象时描了几个点?(至少两点) (3)直线y=
1x,y=x,y=3x,y=-2x的图象。 21x,y=x,y=3x中,哪一个与x轴正方向所成的锐角最大?哪一与x轴2
正方向所成的锐角最小?
4、小结:正比例函数的图象有以下特点: (1)正比例函数的图象都经过坐标原点。
(2)作正比例函数y=kx的图象时,除原点外,还需找一点,一般找(1,k)点。 (3)在正比例函数y=kx图象中,当k>0时,k的值越大,函数图象与x轴正方向所成的锐角越大。
(4)在正比例函数y=kx的图象中,当k>0时,y的值随x值的增大而增大;当k<0时,y的值随x值的增大而减小。
5、做一做
在同一直角坐标系内作出一次函数y=2x+6,y=-x,y=-x+6,y=5x的图象。
一次函数y=kx+b的图象的特点:分析:在函数y=2x+6中,k>0,y的值随x值的增大而增大;在函数y=-x+6中,y的值随x值的增大而减小。
由上可知,一次函数y=kx+b中,y的值随x的变化而变化的情况跟正比例函数的图象的性质相同。对照正比例函数图象的性质,可知一次函数的图象不过原点,但是和两 个坐标轴相交。在作一次函数的图象时,也需要描两个点。一般选取(0,b),(-比较简单。
6、想一想
(1)x从0开始逐渐增大时,y=2x+6和y=5x哪一个值先达到20?这说明了什么?(y=5x的函数值先达到20,这说明随着x的增加,y=5x的函数值比y=2x+6的函数值增加得快)
(2)直线y=-x与y=-x+6的位置关系如何?(平行,一次函数k相同就平行) (3)直线y=2x+6与y=-x+6的位置关系如何?(相交) 7、课堂练习
1、下列一次函数中,y的值随x值的增大而增大的是( ) A、y=-5x+3 B、y=-x-7 C、y=3x-5 D、y=-7x+4 2、下列一次函数中,y的值随x值的增大而减小的是( ) A、y=
b,0)k六、课后小结
2x-8 B、y=-x+3 C、y=2x+5 D、y=7x-6 31、正比例函数y=kx的图象的特点。2、一次函数y=kx+b的图象的特点。 七、作业
习题4.4
初中数学公式大全
1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12 两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边