类型二 平移旋转折叠问题
例1、如图,将三角形纸片ABC沿DE折叠,使点A落在BC边上的点F处,
且DE∥BC,下列结论:①△BDF是等腰三角形;②DE=1BC;③四边形
2ADFE
是菱形;④∠BDF+∠FEC=2∠A.其中一定正确的个数是( ). A.1 B.2 C.3 D.4
例2、下列图形中,是中心对称图形但不是轴对称图形的是( ).
例3、如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0), 点A在第一象限内,将△OAB沿直线OA的方向平移至△O′A′B′的位置, 此时点A′的横坐标为3,则点B′的坐标为 .
例4、在Rt△ABC中,∠BAC=90°,∠B=30°,线段AD是BC边上的中线,如图1,将△ADC沿直线BC平移,使点D与点C重合,得到△FCE,如图2,再将△FCE绕点C顺时针旋转,设旋转角为α(0°<α≤90°),连接AF,DE.
(1)在旋转过程中,当∠ACE=150°时,求旋转角α的度数;
(2)探究旋转过程中四边形ADEF能形成哪些特殊四边形?请说明理由.
2
例5、如图,矩形纸片ABCD,将△AMP和△BPQ分别沿PM和PQ折叠(AP>AM),点A和点B都与点E重合;再将△CQD沿DQ折叠,点C落在线段EQ上的点F处. (1)判断△AMP,△BPQ,△CQD和△FDM中有哪几对相似三角形? (2)如果AM=1,sin∠DMF=
3,求AB的长. 5
例6、如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2, 0),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′B′A′的位置,此时点A′的横坐标为3,则点B′的坐标为( ).
A.(4,23) B.(3,33) C.(4,33) D.(3,23)
例7、图形的折叠:如图,在矩形ABCD中,AD=15,点E在边DC上,联结AE,△ADE沿直线AE翻折后点D落到点F,过点F作FG⊥AD,垂足为G.如果AD=3GD,那么DE=_____.
例8、图形的旋转:如图,已知Rt△ABC中,∠ABC=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC,若点F是DE的中点,连接AF,则AF= .
2
例9、三角形: 如图,△ABC≌△DEF(点A、B分别与点D、E对应),AB=AC=5,BC=6.△ABC固定不动,△DEF运动,并满足点E在BC边从B向C移动(点E不与B、C重合),DE始终经过点A,EF与AC边交于点M,当△AEM是等腰三角形时,BE=_________.
例10、四边形:如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是( ). A.25 B.35 C.5 D.6
例11、圆:如图,⊙O的半径为2,AB,CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A,B,C,D不重合),过点P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为__________.
A.
例12、函数图象:如图,直线l与半径为4的⊙O相切于点A,P是⊙O上一个动点(不与点A重合),过点P作PB⊥l,垂足为B,联结PA.设PA=x,PB=y,则(x-y)的最大值是_____.
2
???? B. C. D. 4263
例13、.如图所示,在Rt△ABC中,∠C=90°,∠BAC=60°,AB=8.半径为3的⊙M与射线BA相切,切点为N,且AN=3.将Rt△ABC顺时针旋转120°后得到Rt△ADE,点B,C的对应点分别是点D,E.
(1)画出旋转后的Rt△ADE;
(2)求出Rt△ADE 的直角边DE被⊙M截得的弦PQ的长度;
(3)判断Rt△ADE的斜边AD所在的直线与⊙M的位置关系,并说明理由.
2