好文档 - 专业文书写作范文服务资料分享网站

人教版八年级数学上学期因式分解 专题过关

天下 分享 时间: 加入收藏 我要投稿 点赞

分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;

(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.

解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);

(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.

3.分解因式

(1)a2(x﹣y)+16(y﹣x); (2)(x2+y2)2﹣4x2y2.

分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;

(2)先利用平方差公式,再利用完全平方公式继续分解. 解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);

2﹣4x2y2,(2)(x2+y2)=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)

2(x﹣y)2.

4.分解因式:

(1)2x2﹣x; (2)16x2﹣1; (3)6xy2﹣9x2y﹣y3; (4)4+12(x﹣y)+9(x﹣y)2.

分析:(1)直接提取公因式x即可;

(2)利用平方差公式进行因式分解;

(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;

(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可. 解答:解:(1)2x2﹣x=x(2x﹣1);

(2)16x2﹣1=(4x+1)(4x﹣1);

(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2; (4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)

2.

5.因式分解:

(1)2am2﹣8a; (2)4x3+4x2y+xy2

分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;

(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.

解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);

(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.

6.将下列各式分解因式:

(1)3x﹣12x3 (2)(x2+y2)2﹣4x2y2.

分析:(1)先提公因式3x,再利用平方差公式继续分解因式;

(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.

解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);

(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)

2(x﹣y)2.

7.因式分解:

(1)x2y﹣2xy2+y3; (2)(x+2y)2﹣y2.

分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;

(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.

解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;

(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).

8.对下列代数式分解因式:

(1)n2(m﹣2)﹣n(2﹣m); (2)(x﹣1)(x﹣3)+1.

分析:(1)提取公因式n(m﹣2)即可;

(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.

解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);

(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.

9.分解因式:a2﹣4a+4﹣b2.

分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解. 解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).

10.分解因式:a2﹣b2﹣2a+1

人教版八年级数学上学期因式分解 专题过关

分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(
推荐度:
点击下载文档文档为doc格式
7v9xr0sdgr1xep036fj71ujtp7zqyg019jt
领取福利

微信扫码领取福利

微信扫码分享