45.(19分)
有人设想用题24图所示的装置来选择密度相同、大小不同的球状纳米粒子。粒子在电离室中电离后带正电,电量与其表面积成正比。电离后,粒子缓慢通过小孔O1进入极板间电压为U的水平加速电场区域I,再通过小孔O2射入相互正交的恒定匀强电场、磁场区域II,其中磁场的磁感应强度大小为B,方向如图。收集室的小孔O3与O1、O2在同一条水平线上。半径为r0的粒子,其质量为m0、电量为q0,刚好能沿O1O3直线射入收集室。不计纳米粒子重力。(V球=43?r,S球=4?r)
32(1)试求图中区域II的电场强度;
(2)试求半径为r的粒子通过O2时的速率; (3)讨论半径r≠r0的粒子刚进入区域II时向哪个极板偏转。
46.(20分)
如题46图,半径为R的光滑圆形轨道固定在竖直面内。小球A、B质量分别为m、βm(β为待定系数)。A球从在边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B球相撞,碰撞后A、B球能达到的最大高度均为度为g。试求:
(1)待定系数β;
(2)第一次碰撞刚结束时小球A、B各自的速度和B球对轨道的压力;
(3)小球A、B在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A、B在轨道最低处第n次碰撞刚结束时各自的速度。
47(20分)
地球周围存在磁场,由太空射来的带电粒子在此磁场的
运动称为磁
漂移,以下是描述的一种假设的磁漂移运动,一带正电的粒子(质量为 m,带电量为q)在x=0,y=0处沿y方向以某一速度v0运动,空间存在 垂直于图中向外的匀强磁场,在y>0的区域中,磁感应强度为B1,在y <0的区域中,磁感应强度为B2,B2>B2,如图所示,若把粒子出发点x =0处作为第0次过x轴。求:
14R,碰撞中无机械能损失。重力加速
第 16 页 共 58 页
(1)粒子第一次过x轴时的坐标和所经历的时间。
(2)粒子第n次过x轴时的坐标和所经历的时间。
(3)第0次过z轴至第n次过x轴的整个过程中,在x轴方向的平均速度v与v0之比。 (4)若B2:B1=2,当n很大时,v:v0趋于何值?
48(20分)如图所示,xOy平面内的圆O′与y轴相切于坐标原点O。在该圆形区域内,有与y轴平行的匀强电场和垂直于圆面的匀强磁场。一个带电粒子(不计重力)从原点O沿x轴进入场区,恰好做匀速直线运动,穿过圆形区域的时间为T0。若撤去磁场,只保留电场,其他条件不变,该带电粒子穿过圆形区域的时间为其他条件不变,求该带电粒子穿过圆形区域的时间。
49(20分)在图示区域中,χ轴上方有一匀强磁场,磁感应强度的方向垂直纸面向里,大小为
B,今有一质子以速度v0由Y轴上的A点沿Y轴正方向射人磁场,质子在磁场中运动一段 时间以后从C点进入χ轴下方的匀强电场区域中,在C点速度方向与χ轴正方向夹角为 450,该匀强电场的强度大小为E,方向与Y轴夹角为450且斜向左上方,已知质子的质量为
m,电量为q,不计质子的重力,(磁场区域和电场区域足够大)求: (1)C点的坐标。
(2)质子从A点出发到第三次穿越χ轴时的运动时间。
(3)质子第四次穿越χ轴时速度的大小及速度方向与电场E方向的夹角。(角度用反三角 函数表示)
50 (22分)如图所示,电容为C、带电量为Q、极板间距为d的电容器固定在绝缘底座上,
两板竖直放置,总质量为M,整个装置静止在光滑水平面上。在电容器右板上有一小孔,一质量为m、带电量为+q的弹丸以速度v0从小孔水平射入电容器中(不计弹丸重力,设电容器周围电场强度为0),弹丸最远可到达距右板为x的P点,求:
(1)弹丸在电容器中受到的电场力的大小; (2)x的值;
(3)当弹丸到达P点时,电容器电容已移动的距离s;
第 17 页 共 58 页
T02;若撤去电场,只保留磁场,
(4)电容器获得的最大速度。
第 18 页 共 58 页
51两块长木板A、B的外形完全相同、质量相等,长度均为L=1m,置于光滑的水平面上.一小物块C,质量也与A、B相等,若以水平初速度v0=2m/s,滑上B木板左端,C恰好能滑到B木板的右端,与B保持相对静止.现在让B静止在水平面上,C置于B的左端,木板A以初速度2v0向左运动与木板B发生碰撞,碰后A、B速度相同,但A、B不粘连.已知C与A、C与B之间的动摩擦因数相同.(g=10m/s2)求:
(1)C与B之间的动摩擦因数; (2)物块C最后停在A上何处?
52(19分)如图所示,一根电阻为R=12Ω的电阻丝做成一个半径为r=1m的圆形导线框,竖直放置在水平匀强磁场中,线框平面与磁场方向垂直,磁感强度为B=0.2T,现有一根质量为m=0.1kg、电阻不计的导体棒,自圆形线框最高点静止起沿线框下落,在下落过程中始终与线框良好接触,已知下落距离为 r/2时,棒的速度大小为v1=心时棒的速度大小为v2 =试求:
?下落距离为r/2时棒的加速度,
?从开始下落到经过圆心的过程中线框中产生的热量.
53(20分)如图所示,为一个实验室模拟货物传送的装置,A是一个表面绝缘质量为1kg的小车,小车置于光滑的水平面上,在小车左端放置一质量为0.1kg带电量为q=1×10-2C的绝缘货柜,现将一质量为0.9kg的货物放在货柜内.在传送途中有一水平电场,可以通过开关控制其有、无及方向.先产生一个方向水平向右,大小E1=3×102N/m的电场,小车和货柜开始运动,作用时间2s后,改变电场,电场大小变为E2=1×10N/m,方向向左,电场作用一段时间后,关闭电场,小车正好到达目的地,货物到达小车的最右端,且小车和货物的速度恰好为零。已知货柜与小车间的动摩擦因数μ=0.1,(小车不带电,货柜及货物体积大小不计,g取10m/s2)求:
?第二次电场作用的时间; ?小车的长度;
?小车右端到达目的地的距离.
B A 2
C 2v0 B A 83m/s,下落到经过圆
103m/s,(取g=10m/s2)
? ? ? ? ?
? ? ?
o? ? ? ?
B
? ? ? ?
54.如图所示,两个完全相同的质量为m的木板A、B置于水平地面上,它们的间距s=2.88m。
质量为2m,大小可忽略的物块C置于A板的左端,C与A之间的动摩擦因数为μ1=0.22,
A、B与水平地面之间的动摩擦因数为μ2=0.10。最大静摩擦力可以认为等于滑动摩擦力。开始时,三个物体处于静止状态。现给C施加一个水平向右,大小为0.4mg的恒力F,假定木板A、B碰撞时间极短,且碰撞后粘连在一起。要使C最终不脱离木板,每块木板的长度至少应为多少?
第 19 页 共 58 页
C F A s B
55(19分)24
如图所示,在直角坐标系的第—、四象限内有垂直于纸面的匀强磁场,第二、三象限内沿。 x轴正方向的匀强电场,电场强度大小为E,y轴为磁场和电场的理想边界。一个质量为m ,电荷量为e的质子经过x轴上A点时速度大小为vo,速度方向与x轴负方向夹角θ=300。质子第一次到达y轴时速度方向与y轴垂直,第三次到达y轴的位置用B点表示,图中未画出。已知OA=L。
(1) 求磁感应强度大小和方向; (2) 求质子从A点运动至B点时间
56(20分)25
如图所示,质量M=4.0kg,长L=4.0m的木板B静止在光滑水平地面上,木板右端与竖直墙壁之间距离为s=6.0m,其上表面正中央放置一个质量m=1.0kg的小滑块A,A与B之间的动摩天楼擦因数为μ=0.2。现用大小为F=18N的推力水平向右推B,两者发生相对滑动,作用1s后撤去推力F,通过计算可知,在B与墙壁碰撞时A没有滑离B。设B与墙壁碰撞时间极短,且无机械能损失,重力加速度g=10m/s.求A在B上滑动的整个过程中,A,B系统因摩擦产生的内能增量。
57。(15分)平行导轨L1、L2所在平面与水平面成30度角,平行导轨L3、L4所在平面与水平面成60度角,L1、L3上端连接于O点,L2、L4上端连接于O’点,OO’连线水平且与L1、L2、L3、L4都垂直,质量分别为m1、m2的甲、乙两金属棒分别跨接在左右两边导轨上,且可沿导轨无摩擦地滑动,整个空间存在着竖直向下的匀强磁场。若同时释放甲、乙棒,稳定后它们都沿导轨作匀速运动。
(1)求两金属棒的质量之比。
(2)求在稳定前的某一时刻两金属棒加速度之比。
(3)当甲的加速度为g/4时,两棒重力做功的瞬时功率和回路中电流做功的瞬时功率之比为多少?
2
第 20 页 共 58 页