matlab实现功率谱密度分析psd及详细解说
功率谱密度幅值的具体含义??
求信号功率谱时候用下面的不同方法,功率谱密度的幅值大小相差很大!
我的问题是,计算具体信号时,到底应该以什么准则决定该选用什么方法啊?
功率谱密度的幅植的具体意义是什么??下面是一些不同方法计算同一信号的matlab 程序!欢迎大家给点建议! 直接法:
直接法又称周期图法,它是把随机序列x(n)的N个观测数据视为一能量有限的序列,直接计算x(n)的离散傅立叶变换,得X(k),然后再取其幅值的平方,并除以N,作为序列x(n)真实功率谱的估计。
Matlab代码示例:
clear;
Fs=1000; %采样频率 n=0:1/Fs:1;
%产生含有噪声的序列
xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));
window=boxcar(length(xn)); %矩形窗 nfft=1024;
[Pxx,f]=periodogram(xn,window,nfft,Fs); %直接法 plot(f,10*log10(Pxx));
间接法:
间接法先由序列x(n)估计出自相关函数R(n),然后对R(n)进行傅立叶变换,便得到x(n)的功率谱估计。
Matlab代码示例:
clear;
Fs=1000; %采样频率 n=0:1/Fs:1;
%产生含有噪声的序列
xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));
nfft=1024;
cxn=xcorr(xn,'unbiased'); %计算序列的自相关函数 CXk=fft(cxn,nfft); Pxx=abs(CXk);
index=0:round(nfft/2-1); k=index*Fs/nfft;
plot_Pxx=10*log10(Pxx(index+1)); plot(k,plot_Pxx);
改进的直接法:
对于直接法的功率谱估计,当数据长度N太大时,谱曲线起伏加剧,若N太小,谱的分辨率又不好,因此需要改进。
1. Bartlett法
Bartlett平均周期图的方法是将N点的有限长序列x(n)分段求周期图再平均。
Matlab代码示例:
clear; Fs=1000; n=0:1/Fs:1;
xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); nfft=1024;
window=boxcar(length(n)); %矩形窗 noverlap=0; %数据无重叠 p=0.9; %置信概率
[Pxx,Pxxc]=psd(xn,nfft,Fs,window,noverlap,p);
index=0:round(nfft/2-1); k=index*Fs/nfft;
plot_Pxx=10*log10(Pxx(index+1)); plot_Pxxc=10*log10(Pxxc(index+1)); figure(1)
plot(k,plot_Pxx);
pause;
figure(2)
plot(k,[plot_Pxx plot_Pxx-plot_Pxxc plot_Pxx+plot_Pxxc]);
2. Welch法
Welch法对Bartlett法进行了两方面的修正,一是选择适当的窗函数w(n),并再周期图计算前直接加进去,加窗的优点是无论什么样的窗函数均可使谱估计非负。二是在分段时,可使各段之间有重叠,这样会使方差减小。
Matlab代码示例:
clear; Fs=1000; n=0:1/Fs:1;
xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); nfft=1024;
window=boxcar(100); %矩形窗 window1=hamming(100); %海明窗
window2=blackman(100); %blackman窗 noverlap=20; %数据无重叠
range='half'; %频率间隔为[0 Fs/2],只计算一半的频率
[Pxx,f]=pwelch(xn,window,noverlap,nfft,Fs,range); [Pxx1,f]=pwelch(xn,window1,noverlap,nfft,Fs,range); [Pxx2,f]=pwelch(xn,window2,noverlap,nfft,Fs,range);
plot_Pxx=10*log10(Pxx); plot_Pxx1=10*log10(Pxx1); plot_Pxx2=10*log10(Pxx2);
figure(1)
plot(f,plot_Pxx);
pause;
figure(2)
plot(f,plot_Pxx1);
pause;
figure(3)
plot(f,plot_Pxx2);