2020年中考数学总复习初中数学总复习知识点
梳理汇编(精品)
1.数的分类及概念:整数和分数统称有理数(有限小数和无限循环小数),像√3,π,0.101001???叫无理数;有理数和无理数统称实数。实数按正负也可分为:正整数、正分数、0、负整数、负分数,正无理数、负无理数。
2.自然数(0和正整数);奇数2n-1、偶数2n、质数、合数。科学记数法:a?10(1≤a<10,n是整数),有效数字。
3.(1)倒数积为1;(2)相反数和为0,商为-1;(3)绝对值是距离,非负数。
4.数轴:①定义(“三要素”);②点与实数的一一对应关系。 (2)性质:若干个非负数的和为0,则每个非负数均为0。
5非负数:正实数与零的统称。(表为:x≥0)(1)常见的非负数有: 6.去绝对值法则:正数的绝对值是它本身,“+( )”;零的绝对值是零,“0”; 负数的绝对值是它的相反数,“-( )”。 7.实数的运算:加、减、乘、除、乘方、开方;运算法则,定律,顺序要熟悉。
23a8.代数式,单项式,多项式。整式,分式。有理式,无理式。根式。
n9. 同类项。合并同类项(系数相加,字母及字母的指数不变)。 a10. 算术平方根: (正数a的正的平方根); 平方根: 11. (1)最简二次根式:①被开方数的因数是整数,因式是整式;
②被开方数中不含有开得尽方的因数或因式;
(2)同类二次根式:化为最简二次根式以后,被开方数相同的二次根式;(3)分母有理化:化去分母中的根号。
12.因式分解方法:把一个多项式化成几个整式的积的形式A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法。
13.指数:n个a连乘的式子记为 。(其中a称底数,n称指数, 称作幂。)
正数的任何次幂为正数;负数的奇次幂为负数,负数的偶次幂为正数。
anan()?nbmbn
ba()?p?()pabanan14. 幂的运算性质:①am an=am+n; ②am÷an=am-n; ③(a)=amn;④( ab )n =anbn ; ⑤
bbmb?bb???aam = = (am≠a?a15.分式的基本性质0);符号法则:
2222222
16.乘法公式:(a+b)(a-b)=a-b; (a+ b)= a+2ab+b; a-b=(a+ba)a22aa(a)?a(a?0)2
ab?a?b(a-b); a+2ab+b = (a+ b)
22
b?b17.算术根的性质:① = ;② ; ③ (a≥0,b≥0); ④ (a≥0,b>0)
18.统计初步:通常用样本的特征去估计总体所具有的特征。(1).总体,个体,样本,样本容量(样本中个体的数目)。
(2)众数:一组数据中,出现次数最多的数据。 平均数:平均
数是刻划数据的集中趋势(集中位置)的特征数。
中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)
?(x1?x2???xn)①x ; x?1122② 1nxf?xf???xkfk(f1?f2???fk?n)n
'x?x?a③若 , ,… , , ;
x1'?x1?a'x2?x2?a'xn?xn?a则
(3)极差:样本中最大值与最小值的差。它是刻划样本中数据波动12222s?[(x1?x)?(x2?x)???(xn?x)]范围的大小。
s?sn方差:方差是刻划数据的波动大小的程度。 2标准差:
(4)调查:普查:具有破坏性、特大工作量的往往不适合普查;抽样调查:抽样时要主要样本的代表性和广泛性。 (5)频数、频率、频数分布表及频数分布直方图: 19.概率:用来预测事件发生的可能性大小的数学量
(1)P(必然事件)=1;P(不可能事件)=0;0〈P(不确定事件A)〈1。
(2)树形图或列表分析求等可能性事件的概率: ;
(3)游戏公平性是指双方获胜的概率的大小是否相等(“牌,球”游戏中放回与不放回的概率是不同的)。
20. (1)两点之间,线段最短(两点之间线段的长度,叫做这两点之
间的距离);
(2)点到直线之间,垂线段最短(点到直线的垂线段的长度叫做点到直线之间的距离);
(3)两平行线之间的垂线段处处相等(这条垂线段的长度叫做两平行线之间的距离);
(4)同平行于一条直线的两条直线平行(传递性);(5)同垂直于一条直线的两条直线平行。
21.性质:在垂直平分线上的点到该线段两端点的距离相等;判定:到线段两端点距离相等的点在这线段的垂直平分线上。
22.性质定理:角平分线上的点到该角两边的距离相等;判定定理:到角的两边距离相等的点在该角的角平分线上。 23.同角或等角的余角(或补角)相等。
24.性质:两直线平行,同位角(内错角)相等,同旁内角互补;判定:
同位角(内错角)相等(同旁内角互补),两直线平行。 25.三角形分锐角三角形、直角三角形、钝角三角形或等腰三角形、
不等边三角形。
①三角形三个内角的和等于180度;任意一个外角等于和它不相邻的两个内角的和;②第三边大于两边之和,小于两边之差;
③重心:三条中线的交点; 垂心:三条高线的交点;外心:三边中垂线的交点; 内心:三角平分线线的交点。
④直角三角形斜边上的中线等于斜边的一半; 一边上的中线等于该边一半的三角形是直角三角形。
⑤勾股定理:直角三角形两直角边的平方和等于斜边的平方;逆定理也成立。
⑥300角所对的边等于斜边的一半;Rt△中,等于斜边的一半的边所对的角是300。
26.全等三角形:①全等三角形的对应边,角相等。②条件:SSS、AAS、ASA、SAS、HL。
27.等腰三角形:在一个三角形中 ①等边对等角;②等角对等边;③三线合一; ④有一个600角的三角形是等边三角形。
28.三角形的中位线平行于第三边并且等于第三边的一半;梯形的中位线平行于两底并且等于两底和的一半
29.n边形的内角和为(n-2).1800,外角和为3600,正n边形的每个内角等于 。
30.平行四边形的性质:①两组对边分别平行且相等; ②两组对角分别相等;③两条对角线互相平分。 判定:①两组对边分别平行;②两组对边分别相等; ③一组对边平行且相等;④两组对角分别相等; ⑤两条对角线互相平分。
31特殊的平行四边形:矩形、菱形与正方形。
32. 梯形:一组对边平行而另一组对边不平行的四边形。
梯形可分①直角梯形②等腰梯形。 等腰梯形同一底上的两个内角相等; 等腰梯形的对角线相等。