好文档 - 专业文书写作范文服务资料分享网站

利用双RGB-D 传感器融合增强对未知环境的自主探索和地图构建

天下 分享 时间: 加入收藏 我要投稿 点赞

Engineering5(2024)164–172Contents lists available at ScienceDirectEngineeringResearch

Robotics—Article

EnhancedAutonomousExplorationandMappingofanUnknownEnvironmentwiththeFusionofDualRGB-DSensors

NingboYua,b,c,?,ShirongWanga,baInstituteofRoboticsandAutomaticInformationSystems,NankaiUniversity,Tianjin300353,ChinaTianjinKeyLaboratoryofIntelligentRobotics,NankaiUniversity,Tianjin300353,ChinacStateKeyLaboratoryofRobotics,ShenyangInstituteofAutomation,ChineseAcademyofSciences,Shenyang110016,Chinabarticleinfoabstract

The autonomous exploration and mapping of an unknown environment is useful in a wide range of appli-cations and thus holds great signi?cance. Existing methods mostly use range sensors to generate two-dimensional (2D) grid maps. Red/green/blue-depth (RGB-D) sensors provide both color and depth infor-mation on the environment, thereby enabling the generation of a three-dimensional (3D) point cloud map that is intuitive for human perception. In this paper, we present a systematic approach with dual RGB-D sensors to achieve the autonomous exploration and mapping of an unknown indoor environment. With the synchronized and processed RGB-D data, location points were generated and a 3D point cloud map and 2D grid map were incrementally built. Next, the exploration was modeled as a partially observ-able Markov decision process. Partial map simulation and global frontier search methods were combined for autonomous exploration, and dynamic action constraints were utilized in motion control. In this way, the local optimum can be avoided and the exploration ef?cacy can be ensured. Experiments with single connected and multi-branched regions demonstrated the high robustness, ef?ciency, and superiority of the developed system and methods.

ó 2024 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

Articlehistory:Received4February2024Revised25June2024Accepted8November2024Availableonline27December2024Keywords:AutonomousexplorationRed/green/blue-depthSensorfusionPointcloudPartialmapsimulationGlobalfrontiersearch1.IntroductionAutonomousrobotscanacquireinformationontheenviron-mentandassisthumansinvariouscircumstancesandapplications,suchasrescuinghumansfromdanger,providingservicewithinurbanorhomeenvironments,andguidingorotherwiseaidingpeo-pleinneed[1–6].Despitethedramaticdevelopmentofrelativetechnologiesandalgorithms,majorchallengesremain.Thecom-plexityandvariabilityoftheunknownenvironmentmakeitdif?-cultforhumanoperatorstoprovidepriorinformationtoarobot[7].Thus,itisofgreatsigni?cancetoequiparobotwiththecapa-bilitiesofautonomousexplorationandmapping,includingincre-mentalmapconstruction,localization,pathplanning,motioncontrol,navigation,andsoon,withoutdirecthumanintervention.Heuristicandreactiveexplorationapproacheshavebeenstudiedintheliterature.InRef.[8],Yamauchiproposesafrontier-basedheuristicexplorationalgorithm.InRef.[9],basedontheangularuncertaintyofsonarsensor,aheuristicexploration?Correspondingauthor.E-mailaddress:nyu@nankai.edu.cn(N.Yu).strategyisproposedthatusesasonarsensorarrayforperceptionandmapping.InRef.[10],alocalmap-basedfrontiergraphsearchexplorationmethodisdeveloped,andtheenvironmentisrepre-sentedbyatreestructure,makingitef?cienttodeterminethenexttargetpositionevenwithinalargeenvironment.InRef.[11],KeidarandKaminkadescribeamorphologicalfrontierdetectionmethodusinglightdetectionandranging(LIDAR)datatoacceleratethemapfrontierpointdetectionprocess.InRef.[12],areactiveexplorationstrategyisproposedthatusescurrentvelocityandbearingforrapidfrontierselection.Thesimulation-basedautonomousexplorationstrategyhasbeenattractingincreasingresearcheffort,sinceitcanassistinmeasuringinformationandgeneratingthegoalposebasedonacurrentrobot’sstatusduringexploration.InRef.[13],Carrilloetal.proposeautilityfunctionwithShannonandRényientropyinordertomeasuretherobot’sactionsforexploration.InRef.[14],LauriandRitalapresentaforwardsimulationalgorithm,andformulatetheexplorationtoapartiallyobservableMarkovdecisionprocess(POMDP).InRef.[1],withpartiallyknownenvi-ronmentinformation,ared/green/blue-depth(RGB-D)sensorisusedforloopclosuredetectioninanautonomousmappingandexplorationprocess.InRef.[15],Baietal.proposeaGaussianN.Yu,S.Wang/Engineering5(2024)164–172165processregression-basedexplorationstrategy,andpredictmutualinformationwithrobotmotionsamples.InRef.[16],theautono-mousexplorationproblemisformulatedasapartialdifferentialequation;theinformationisdescribedasascalar?eldfromthepriorknownareatotheunknownarea.Inexistingexplorationmethods,rangesensorsaremostlyusedandtwo-dimensional(2D)gridmapsaregenerated.How-ever,a2Dgridmaponlycontainsplanargeometricinformation,andisofteninsuf?cientforhumanperception[17–19].RGB-Dsensorsdirectlyprovidebothcoloranddepthinformation,andcanhelptogenerateathree-dimensional(3D)pointcloudmap.RGB-Dsensor-basedsimultaneouslocalizationandmapping(SLAM)systemswere?rstproposedindependentlybyHenryetal.[20]andEngelhardetal.[21].Imagefeatureswereusedto?ndmatchesamongeachframe,andaniterativeclosestpoint(ICP)algorithmwasappliedtoestimatethepointcloudtransfor-mationsintheRGB-DSLAMsystems.InRef.[22],KleinandMurraypresenttheparalleltrackingandmapping(PTAM)frame-workandimplementtrackingandmappingindualparallelthreads.LabbéandMichaud[23]proposethereal-timeappearance-basedmapping(RTABMAP)algorithm,inwhichloopclosuredetectionthreadandamemorymanagementmethodareadded.Onlineincrementalmappingandloopclosuredetectioncanbeattained,andthemappingef?ciencyandaccuracycanremainconsistentovertime.The?eldofview(FoV)ofexistingRGB-Dsensorsislimited[24].Toobtainagreaterscopeofenvironmentinformation,multipleRGB-Dsensorscanbeusedtogether.DualRGB-DsensorshavebeenutilizedinvisualSLAMforrobustposetrackingandmapping[25],andanRGB-Dsensorhasbeenfusedwithaninertialmea-surementunit(IMU)forindoorwide-rangeenvironmentmapping[26].InRef.[27],Munaroetal.presentanRGB-Dsensornetwork,inwhichmultipleRGB-Dsensorsaredeployedinanindoorenvi-ronmentforhumantracking.InRef.[28],multipleRGB-Dsensorswithnon-overlappingFoVsareemployedforlinedetectionandtracking,thusprovidinga3Dsurroundingviewandmorphologicalinformationontheenvironment.Inourpreviouswork,wedevelopedRGB-D-basedlocalizationandmotionplanningandcontrolmethods[24],andrealizedRGB-D-basedexploration[17].Nevertheless,therobustnessandef?ciencyoftheexplorationprocesswaslimitedduetothesmallFoVoftheRGB-Dsensor.Inthiswork,weuseddualRGB-Dsensorsforthemobilerobot.ThedeploymentofdualRGB-Dsensorspro-videdalargerFoV,butalsointroducedtechnicalchallengesininterference,datasynchronization,andprocessing.Withthesyn-chronizeddatafromthedualRGB-Dsensors,locationpointsweregeneratedanda3Dpointcloudmapand2Dgridmapwereincre-mentallyconstructed.Anautonomousexplorationstrategywasestablishedbycombiningpartialmapsimulationwithglobalfron-tiersearchmethods.Inthisway,thelocaloptimumcanbeavoidedandtheexplorationef?cacycanbeensured.Theexperimentalresultsdemonstratedthehighrobustnessandef?ciencyofthedevelopedsystemandmethods.Thispaperisorganizedasfollows:Section2presentsthe3Dand2DmappingmethodwithdualRGB-Dsensors,andSection3describestheautonomousexplorationalgorithmindetail.Section4describesthemobilerobotsystemthatvalidatestheproposedmappingandexplorationmethod.Section5presentstheexperi-mentsandresults.Finally,Section6concludesthepaper.2.MappingwithdualRGB-DsensorsWiththeinformationprovidedbydualRGB-Dsensors,a3Dpointcloudmapcanbeconstructedinrealtime.Thisprocessincludeslocationpointcreation,mapping,andloopclosuredetection.2.1.LocationpointgenerationFig.1presentstheprocessofcreatinglocationpoints.Inordertoconstructa3Dpointcloudmap,thesensordatamustbepro-cessed;thisincludestheRGBimagesanddepthimagesfromthedualRGB-Dsensors,andthewheelodometrydatafromthemobilechassis.Thedatashouldthenbesynchronized.TheposebetweenthedualRGB-Dsensorsisknown,asitcanbedeterminedbycali-brationaftersystemassembly.Pastinformationisnotincludedinthecurrentframeoftheinformationqueue,includingRGBimages,depthimagesfromthedualRGB-Dsensors,andthewheelodometryinformation.Fig.2depictsthesynchronizationimplementedwiththerobotoperatingsystem(ROS)message?ltermethod.Thesynchronizedsensordataareprocessedtocreatelocationpoints.DualRGB-Dcoloranddepthdataaresimultaneouslycom-binedintoanintegrateddatastructurethatcomprisesthecurrentsensordata,whichcanbeusedforthelocationpointcreationpro-cess.Theorientedfastandrotatedbrief(ORB)featurepointsandcorrespondingdescriptorsareobtainedfromtheRGBimages.The3Dfeaturepointsintherobotframeareintegratedwiththe2Dfea-turepointsandwithcorrespondingdepthdatafromthedepthimages,astheposebetweenthedualRGB-Dcamerasisknown.Thefundamentalmatrixbasedontheepipolarconstraintiscalcu-latedinordertodeterminetheinliers,usingmatched3Dfeaturepointsfromthelastframeandthecurrentframe.Withenoughinliers,datafromthewheelodometryisextractedtoprovideaninitialguessofthetransformationbetweenthelastframeandthecurrentframe.Fig.1.Theprocessoflocationpointscreation.166N.Yu,S.Wang/Engineering5(2024)164–172Fig.2.Sensordatasynchronization.Thetransformationbetweentheframesisestimatedbytheran-domsampleconsensus(RANSAC)algorithmbasedontheperspec-tive–n–points(PnP)model,usingmatched3Dfeaturepoints.Thebagofwords(BoW)ofaframeiscreatedbycorrespondingORBdescriptors,andtheenvironmentvocabularyisincrementallycon-structedwiththeBoWonline,ratherthanpre-traininginthetargetenvironment,asdoingsoismoresuitableforautonomousexplo-rationtasks.Thelocationpoint,Lt,iscreatedwiththeaboveinfor-mationandthecurrenttimestamp,t,andtheedgebetweenthelastandcurrentlocationpointisinitialized,withitsweightsettozero.Deptherrorsandfeaturemismatcherrorsmayexistinanunknownenvironment,especiallyinaplacewithfewfeaturesandvaryingillumination.AsuddenchangeinRGB-Dlocalizationmayoccur,whichcandetrimentallyimpactthereal-timemotioncontrolofthemobilerobot.Furthermore,althoughwheelodome-trychangessmoothly,itcontainsaccumulatederror.However,theRGB-DlocalizationandwheelodometrycanbefusedbymeansofanextendedKalman?lterinordertoachieverobustlocalization.2.2.PointcloudmappingandloopclosuredetectionThemappingandtheloopclosuredetectionprocessaretightlycoupledusinggraphoptimizationandmemorymanagementmethodstoensurestabilityandreal-timeperformance.Thesimi-larityandposeofthelocationpointsareoptimizedinthetree-basednetworkoptimizer(TORO)framework[29]toensureglobalconsistency.Thelocationpointsarestoredintheworkingmemory(WM)orlong-termmemory(LTM),asdeterminedbythesimilarity,asshowninFig.3.ThelocationpointsintheWMareusedforreal-timeloopclosuredetection,whileotherlocationpointsarestoredintheLTMascandidates.ThecandidateswilleitherberetrievedtotheWMordeleted,accordingtotheirsimilarityandstoragetimeintheLTM.First,LtissetasanewvertexofthegraphandthesimilarityofLtandthenearestMlocationpointsiscalculatedbytheirBoWs,asshowninEq.(1),whereKmatchedrepresentsthematchedBoWnumberbetweentheBoWofLtandaBoWfromoneofthenearestNlocationpoints,Lc.KtandKcaretheBoWnumbersofLtandLc,respectively.ThesimilarityofLtandLcismarkedask.Whenkisgreaterthanthethreshold,e,LcismergedintoLtandLtisloadedintoWM.8>>keLKct;LcT?t>>e1T:KmatchedK;Kt KccTheconditionalprobabilitiesoftheloopclosureamongLtandotherlocationpointsonthegraphareupdatedwithk.TheweightofthegraphedgesamongLtandtheotherlocationpointsarecor-Fig.3.Theprocessofmappingandloopclosuredetection.rectedbyTORO,includingthelocationpointsintheWMandLTM.ThetransformationsamongLtandthelocationpointsintheWMarecalculatedbytheICPalgorithm,withaninitialguessfromthewheelodometry.Loopclosureisestablishedifthevariationissmallerthanthegiventhreshold.Withtheestimatedcurrenttrans-formation,theweightsoftheedgesareupdatedandtheposesofotherlocationpointsarecorrectedtoensuretheglobalconsistencyoftheposefromeachlocationpoint.ThelocationpointintheWMwiththelowestweightandlongestresidencetimewillbetrans-ferredtotheLTM,andthelocationpointintheLTMwiththegrea-testweightwillberetrievedtotheWM.Theglobal3Dpointcloudmapisupdatedwiththecorrectedinformationfromthegraph.Fig.4showsthe3Dpointcloudsegmentationand2DgridmapconstructionprocesswithdualRGB-Dsensors.Thepointcloudmapisvoxelizedanddown-sampledwiththevoxel?lterinthePointCloudLibrary(thevoxelsizeissetas0.05m).Apointsetisselectedanditsnormalvectorisestimatedbytheknearestneigh-boralgorithm.Thepointsetsizekissetas10,whichreconcilesthecomputingef?ciencywiththeprecision.Thenormalvectorisesti-matedasshowninEq.(2).C?1Xkk1epààpTepààpTT;C2R3?3i?iiCávd?kdávd;d2f1;2;3g;vd2R3?1;kd2Rte2Tvnormal?vn;wherekn?maxfk1;k2;k3gFig.4.Theprocessof3Dpointcloudsegmentationand2Dgridmapconstruction.N.Yu,S.Wang/Engineering5(2024)164–172167Here,pàiisthecoordinateofeachpointandpisthecentercoor-dinateofthecorrespondingpointset.Cisthecovariancematrix,andvdandkdaretheeigenvectorandeigenvalueofC,respectively.Theeigenvectorwiththebiggesteigenvalue,vnisselectedasthenormalvectorofthepointset,vnormal[30].Thepointsetsinthepointcloudcanbedeterminedandsegmentedwiththeaboveinformation.Ifthepointsethasanormalvectorthatdeviatesfromtheverticaldirectionbymorethanagiventhreshold,itissetasanobstacle.Otherwise,itispossibletomovetothenextstep.ThepointsetisthenprocessedwiththeEuclideanclusteringextractionmethod.Iftheheightofitscenterisgreaterthanagiventhreshold,thepointsetwillbesetasanobstacle.Otherwise,itistakenasfreespace.Thegridmapisconstructedwiththe(x,y)coordinatesfromtheobstacleportionofthepointcloud.Arobotmaypassbyaregionwithfewvisualfeaturesorwithfeaturesthataresimilartothesurroundings,whichleadstothefailureofloopclosuredetection[31].Insuchcircumstances,themobilerobotcanexecuteautonomousmotionintheexplorationprocess;thischangestheFoVofthedualRGB-Dsensorsinordertoobtainmoreenvironmentinformation.3.AutonomousexplorationThereal-timeupdated2Dgridmapandlocalizationaresetaspriorinformationfortheautonomousexploration.Theupdatedmapandodometryinformationareusedforthenextgoalposegeneration,soastoexpandthemapandfurtherexploretheenvironment.3.1.AutonomousexplorationbasedonthePOMDPmodelAssumingthattheenvironmentispartiallyknownandcontainsstochasticinformation,themobilerobotexplorationprocesscanbedescribedbyaPOMDPmodelhs;S;U;Z;TS;O;Ri.??s?f0;1;...;k;...grepresentsthedecisionepochofthegoalgenerationintheexplorationtask.??S?X?M?f?X0;M0??;?X1;M1??;...;?Xk;Mk??;...grepresentsthestatespaceoftheexplorationtask,includingthemobilerobotstateXeXk??xk;yk;hk??TTandthemapstateM.XandMarebothobservable.(Theerrorsfromapplyingagivenmotiontotherobotandfromapplyingthelocalizationdataarenotconsidered,soXiscompletelyobservableandMispartiallyobservable.)??U?fU0;U1;...;Uk;...geUk??vk;xk??TTrepresentsthefeasiblemotionaccordingtotherobotmotionconstraint.??Zrepresentstheobservationspace.??TS?TX?TMrepresentsthestatetransfermodel,whichconsistsofTXandTM.TX:X?U?X!RtdescribesastatetransferTkt1kfromthecurrentmobilerobotstateXkandmotionUktothenextstate,Xk+1.TM:M?U?M!?0;1??;?0;1??representsthescopeofoccu-pancygridprobabilities.TMisindependentofU,whichmeansthatTMeMk;Ui;Mkt1T?TMeMk;Uj;Mkt1TforanyUi;Uj2U.??O:Z?X?M?U!?0;1??representstheobservationmodel,asshowninFig.5.Accordingtothecurrentmobilerobotposeandthe2Dgridmap,anobservationvalueofthecurrentstateistakenbyraytracingthemodel.??R:B?X?M?U!Rtrepresentstherewardfunctioncon-structedbythestate,observation,andaction,asmeasuredbythebeliefstatevalue.Mutualinformationfunctionischosenastheformoftherewardfunction.Basedonthe2Dgridmapandtherobotpose,aseriesofmobilerobotmotionsaregeneratedfortrajectorysimulation,fromwhichthecurrentgoalposeisselected.Themotionsareevaluatedbytherewardfunction,withthetargetbeingtomaximizetherewardFig.5.TheexplorationprocessbasedonthePOMDPmodel.functioninthecorrespondingdecisionepoch.InthePOMDPmodel-basedexplorationprocess,therewardfunctionisde?nedasthemutualinformationfunction,asinEq.(3).Rkrepresentstherewardfunctionvalueindecisionepochk,whichisdeterminedbythestatesofNparticles.ParticlesaresimulatedfromthebeliefstateBkandeUkTN;withtherobotstateeXkt1TN;andwiththeobser-vationeZkt1TNofthemapstateN\ MR1Xpàkt1.X;Uá!n;kt1jBkk;Zn;kt1k?NlogàáZn?1pXn;kt1jBk;UktpàMán;kt1jBk;Uk;Zn;kt1;Xn;kt1e3TM !#álogpàMán;kt1jBk;Uk;Zn;kt1;Xn;kt1pàMán;kt1jBk;UkThe?rsttermofEq.(3)istheexpectedinformationgainofthemobilerobotstate.Consideringthattheexperimentalenvironmentisa?atterrainonwhichthegivenmotioncanbeexecutedcor-rectly,weassumethatthereisnonoiseinthemobilerobotmotionmodelXkt1?feXk;UkT[32],asshowninEq.(4).Thisassumptionalignswiththedecisiontochoosetheparticlestatewiththemax-imumlikelihoodvalueXnm;kt1astheexpectedresult.Therefore,themutualinformationgaindescribedbytherobotstateandobserva-tionissetas0.23232àvksinhkktvsinehktxkDtT36xkt174y7kt175?6xk6xkxk4yk75t667h6vkcoshàvkcosehtxDt7kt1hk4xkkkkxkT5e4TxkDtThesecondtermofEq.(4)istheexpectedinformationgainofthemapstate,whichisrepresentedbythemutualinformationgainofthemapstateandtheobservationvalue.Theintegralisimplementedbysumminguptheentropyoftheselectedgridsdur-ingthesimulation.Theprobabilityrangeofthegridis?0;1??:0forthefreestateand1fortheoccupiedstate.Theentropyofthebinaryrandomvariableisde?nedinEq.(5).EepT?àplogepTàe1àpTloge1àpTe5TTheentropysummingscopeissetbasedontheray-tracingobser-vationmodelofthesensor.Themodelisdescribedasfollows:De?neasectorwith(xk,yk)astheorigin,themaximumobservationrangerastheradius,andtheobservationanglehasthecenterangle.Selecttheprobabilityvalueofthegridsintheray-tracingbeamdirectionofthesectorandcalculatethecorrespondingentropyvalue.Forgridswithanunknownprobability(whichmeansthatthegridisintheunknownenvironment),settheentropyvalueas1.168N.Yu,S.Wang/Engineering5(2024)164–1723.2.PartialmapsimulationandglobalfrontiersearchThemobilerobotautonomousexplorationprocessisdescribedbythePOMDPmodel,inwhichthegoalposeofeachepochisgeneratedbythecombinedstrategiesofpartialmapsimulationandglobalfrontiersearch,asshowninFig.6.AgoalposeXganditsrewardfunctionvalueRgisgeneratedbythepartialmapsimu-lationprocesswiththecurrent2Dgridmapandrobotpose.ThisprocessislistedasProcedure1,andcontainsparticlesampling,weightcalculation,andresampling.TheparametersincludetheiterationnumberI,particlenumberN,samplingnumberf/Iigi?1;sampledistributionkernelfunctionfi;ray-tracingmodelv;simu-lationstageH;resamplinglowerbound??N;anddiscountfactorc.ThepartialmapsimulationprocessbasedonthePOMDPmodelispresentedinProcedure1.First,thealgorithmiteratesoveri?1;...;Iandsimulatesparticlesovern?1;...;N.Basedontheiterationnumber,akernelfunctionfiischosenforparticlesampling,generatingthemotionseriesUenT0:Hà1;i.Foruniformityoftheinitialsamplingandabettersolutionforsubsequentsampling,f1issetasauniformdistributionandfiei!2TissetasanormaldistributionwiththemeanfromUenT0:Hà1;ibyinitialsamplingf1.TherangeoftheuniformdistributionUrangeandthecovariancematrixofthenormaldistributionRaresetbasedonthevelocityrangeofthemobilechassis.Currentparticleposesareupdatedbasedonthemobilerobotmotionmodelandthegeneratedmotions.Themapobservationisupdatedfromtheray-tracingmodelandgivenanobservationrange,andtherewardfunctionvalueofeachparticleisalsoupdated.Thesamplingnumberf/igIi?1isanincreasinglinearsequenceofie/i?aitbT;andisafasterwaytoconvergetotheoptimalsolutionoftheprobabilityFig.6.Diagramoftheexplorationstrategy.meaning.Theweightsoftheparticlesareupdatedafterthesimu-lationstagehasoccurredHtimes.Thepriorandposteriorinforma-tionareevaluatedwithobservationzenT1:H;j,basedonray-tracingmodelvandtheinversesensormodel.Inpracticalapplications,therewardfunctioniscalculatedusingpriorandposteriorinfor-mation.Thelogoddsofthepriorandposteriorprobabilityarecal-culated,withrandomvaluelISMasthenoiseoftheinversesensormodel.Thediscountfactorcindicatestherelationshipbetweenthesimulatedinformationandthecurrentinformation.Forexam-ple,c>1meansthatfurthersimulatedinformationtakesonmoreweight.Iftheweightsoftheparticlesare1=PNhoverlydispersed,enTi2n?1wi

利用双RGB-D 传感器融合增强对未知环境的自主探索和地图构建

Engineering5(2024)164–172ContentslistsavailableatScienceDirectEngineeringResearchRobotics—ArticleEnhancedAutonomousExplorationandMappingofanUnknownEnvironmentwiththeFusionofDualRG
推荐度:
点击下载文档文档为doc格式
7t5yr4p4a40mq5e7eayt5nd0e7n2yj017de
领取福利

微信扫码领取福利

微信扫码分享