习题十二
1.写出下列级数的一般项:
1111????L357(1)
(2)
;
xxxxx2????L22?42?4?62?4?6?8;
;
a3a5a7a9????L3579(3)
1Un?2n?1; 解:(1)
Un?
(2)
xn2?2n?!!;
n?1 (3)
2.求下列级数的和:
?Un???1?a2n?12n?1;
(1)
??x?n?1??x?n??x?n?1?n?11;
(2)
??n?1?n?2?2n?1?n?;
111?2?3?L5(3)55;
un?1?x?n?1??x?n??x?n?1?解:(1)
111?????2??x?n?1??x?n??x?n??x?n?1???
11111????Sn??2?x?x?1??x?1??x?2??x?1??x?2??x?2??x?3?11??L???x?n?1??x?n??x?n??x?n?1???111??????x??????2x?1x?nx?n?1??从而
11limSn?n??2x?x?1?,故级数的和为2x?x?1? 因此
(2)因为
Un??n?2?n?1???n?1?n?
Sn??3?2???2?1???4?3???3?2???5?4???4?3??L??n?2?n?1???n?1?n??n?2?n?1?1?21??1?2n?2?n?1从而
所以n??limSn?1?2,即级数的和为1?2.
111Sn??2?L?n5551??1?n?1????5??5????11?51??1?n???1????4??5??(3)因为
从而
3.判定下列级数的敛散性:
limSn?n???114,即级数的和为4.
(1)
??n?1n?1?n?;
1111???L??L?5n?4??5n?1?(2) 1?66?1111?16n22223n?12?3?3?L???1??Ln33(3) 331111??3?L?n?L555(4)5;
;
;
Sn??2?1???3?2??L??n?1?n?解:(1) 从而n???n?1?1,故级数发散.
limSn???1?1111111?Sn??1??????L???5?661111165n?45n?1?1?1???1??55n?1??(2)
11limSn?n??5,故原级数收敛,其和为5. 从而
2q??3的等比级数,且|q|<1,故级数收敛. (3)此级数为1Un?nlimUn?1?05(4)∵,而n??,故级数发散.
4.利用柯西审敛原理判别下列级数的敛散性:
??1?n?1?n(1) n?1??;
cosnx?n2n?1(2) ;
?11??1?????3n?13n?23n?3??. n?1(3)
解:(1)当P为偶数时,
Un?1?Un?2?L?Un?p??1?n?2??1?n?3??1?n?4??1?n?p?1????L?n?1n?2n?3n?p??1111???L?n?1n?2n?3n?p1111??1??1????L?????n?p?2n?p?1?n?pn?1?n?2n?3???1?n?1当P为奇数时,
Un?1?Un?2?L?Un?p??1?n?2??1?n?3??1?n?4??1?n?p?1????L?n?1n?2n?3n?p??1111???L?n?1n?2n?3n?p11?1?1??1????L????n?p?1n?p?n?1?n?2n?3???1?n?1因而,对于任何自然数P,都有
Un?1?Un?2?L?Un?p?11?n?1n,
?1?N????1???,则当n>N时,对任何自然数P恒有Un?1?Un?2?L?Un?p??成立,由?ε>0,取
??1?n?1?n柯西审敛原理知,级数n?1?收敛.
(2)对于任意自然数P,都有
Un?1?Un?2?L?Un?pcos?n?p?xcos?n?1?xcos?n?2?x??L?2n?12n?22n?p111?n?1?n?2?L?n?p2221?1?1???2n?1?2p??11?211??n?1???2?2p?1?n2
1??log2?????,当n>N时,对任意的自然数P都有于是, ?ε>0(0<ε<1),?N=?Un?1?Un?2?L?Un?p??(3)取P=n,则
成立,由柯西审敛原理知,该级数收敛.
Un?1?Un?2?L?Un?p111111???????L????3?2n?13?2n?23?2n?3?3?n?1??13?n?1??23?n?1??3?11??L?3?n?1??13?2n?1n?6?n?1?1?12
1?0?12,则对任意的n∈N,都存在P=n所得Un?1?Un?2?L?Un?p??0,由柯西审敛原理从而取
知,原级数发散.
5.用比较审敛法判别下列级数的敛散性.
111??L??L????4?65?7n?3n?5(1)
1?21?31?n1???L??L2221?21?31?n(2)
πsin?3n(3)n?1?;
?;
(4)
n?1??12?n31n;
1?n1?an?1(5)
解:(1)∵
??a?0?;
(6)
??2n?1?1?.
Un?11?2?n?3??n?5?n
1?2而n?1n(2)∵
??收敛,由比较审敛法知
?Un?1?n收敛.
Un?1?n1?n1??221?nn?nn
1?而n?1n发散,由比较审敛法知,原级数发散.
ππsinnn33lim?limπ??πn??n??1π3n3n(3)∵
??ππsin??n3n也收敛. 而n?13收敛,故n?1sinUn?(4)∵
12?n3??1n31?1n32
?而
n?1?1n32?收敛,故
n?12?n3收敛.
??1111Un????nnnna1?an?1n?11?aa(5)当a>1时,,而收敛,故
11limUn?lim??0n??n??22当a=1时,,级数发散.
1limUn?lim?1?0n??n??1?an当0 也收敛.