Learning Vector Quantization for Classifying
Astronomical Objects
佚名
【期刊名称】《天文和天体物理学研究》 【年(卷),期】2003(003)002
【摘要】The sizes of astronomical surveys in different wavebands are increas-ing rapidly. Therefore, automatic classification of objects is becoming ever moreimportant. We explore the performance of learning vector quantization (LVQ) inclassifying multi-wavelength data. Our analysis concentrates on separating activesources from non-active ones. Different classes of X-ray emitters populate distinctregions of a multidimensional parameter space. In order to explore the distributionof various objects in a multidimensional parameter space, we positionally cross-correlate the data of quasars, BL Lacs, active galaxies, stars and normal galaxiesin the optical, X-ray and infrared bands. We then apply LVQ to classify them withthe obtained data. Our results show that LVQ is an effective method for separatingAGNs from stars and normal galaxies with multi-wavelength data. 【总页数】8页(183-190)
【关键词】method: data analysis - method: statistical - catalogs 【作者】佚名
【作者单位】National Astronomical Observatories, Chinese Academy of
Sciences,
100012;zyx@lamost.bao.ac.cn;yzhao@lamost.bao.cn;National
Beijing
Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012;zyx@lamost.bao.ac.cn;yzhao@lamost.bao.cn 【正文语种】中文 【中图分类】P1 【文献来源】
https://www.zhangqiaokeyan.com/academic-journal-cn_research-astronomy-astrophysics_thesis/0201254260699.html 【相关文献】
1.Brief Review on Learning Objects in Online Learning [J], Wang Yingli; Yin Guizhi
2.A parallel and robust object tracking approach synthesizing adaptive Bayesian learning and improved incremental subspace learning [J], Kang LI; Fazhi HE; Haiping YU; Xiao CHEN
3.3D object retrieval based on histogram of local orientation using one-shot score support vector machine [J], Vahid MEHRDAD; Hossein EBRAHIMNEZHAD
4.MULTIPLE KERNEL RELEVANCE VECTOR MACHINE FOR GEOSPATIAL OBJECTS DETECTION IN HIGH-RESOLUTION REMOTE SENSING IMAGES [J], Li Xiangjuan; Sun Xian; Wang Hongqi; Li Yu; Sun Hao
5.Object registration for remote sensing images using robust kernel
pattern vectors [J], DING MingTao; JIN Zi; TIAN Zheng; DUAN XiFa; ZHAO Wei; YANG LiJuan
以上内容为文献基本信息,获取文献全文请下载
Learning Vector Quantization for Classifying Astronomical Objects



