好文档 - 专业文书写作范文服务资料分享网站

高分子物理考研概念及要点、考点总结(强烈推荐)

天下 分享 时间: 加入收藏 我要投稿 点赞

?Acos????)上的法应力.

15

??n?FnA??Fcos?A???0cos?2 当?=0时有最大值, ??n??0,

??2 当??0sin?切应力为 ??s?Fs?Fsin??45时有最大值, ??s?0 ?A?A?22也就是说,抗剪切强度总是比抗张强度低,由于分子链间的滑移总是比分子链断裂容易.所以拉伸时

?45斜面上切应力首先达到材料的抗剪切强度而出现滑移变形带.

拉伸时由于截面积变化较大,使真应为-应变曲线与习用应力(或工程应力)-应变曲线有很大差别,真应力-应变曲线上可能没有极大值,而不能判断屈服点。可以用康西德雷(Considere)作图法,即从

??0(即???1)点向曲线作切线,切点就是屈服点,因为满足以下屈服判据

d?真d???真?

高聚物的真应力-应变曲线可归纳为三类:

①由??0点不可能向曲线引切线没有屈服点,不能成颈,是橡胶聚合物的情况。

②Considere作图法:由??0可向曲线作一条切线,曲线上有一个点满足③由??0可以向曲线作两条切线,有两个点满足屈服条件,A点是屈服点,出现细颈(稳定),然后发生冷拉到B点,(细颈后试样面积不变,应力也不变,从而真应力不变,出现平台)这是结晶聚合物的情况.

d??d??0,此点为屈服点,在此点高聚物成颈(但不稳定),是非晶态聚合物的情况。 高聚物屈服的特征

①屈服应变大。②应变软化现象。许多高聚物在过屈服点后应为均有不大的下降,叫做应变软化。

③屈服应力的应变速率依赖性。高聚物的屈服应力随应变速率增大而增大。④屈服应力的温度依赖性。高聚物的屈服应力随温度的增加而降低。⑤流体静压力对屈服应力的影响。压力增加,屈服应力随之增大。⑥高聚物在屈服时体积稍有缩小。⑦鲍新格(Bauschinger)效应明显。Bauschinger效应:指材料在一个方向塑性屈服后,在它反方向上的屈服就比较容易。

4 断裂

高分子链断裂的微观过程归结为:①化学键破坏;②分子间滑脱;③范德华力或氢键破坏;高分子材料的实际强度比理论强度小1~2个数量级。说明高聚物的断裂不是完全破坏每根链的化学键,也不是分子间完全滑脱,而很可能是首先将发生在未取向部分的氢键或范德华力的破坏,然后应力集中到取向的分子链上导致一些共价键断裂。

脆性断裂:在材料屈服之前发生的断裂称为~。

韧性断裂:在材料屈服之前发生的断裂称为~。

疲劳:高聚物可能在低于静态应为-应变曲线上的极限应为值之下就发生破坏,这叫做高聚物的~

5影响高聚物实际强度的因素

(1)化学结构。 链刚性增加的因素(比如主链芳环、侧基极性或氢键等)都有助于增加强度,极性基团过密或取代基过大,阻碍着链段的运动,不能实现强迫高弹形变,反而会使材料较脆。

16

(2)相对分子质量. 在临界相对分子质量Mc(缠结相对分子质量)之前,相对分子质量增加强度增加,越过Mc后拉伸强度变化不大,而冲击强度则随相对分子质量增加而增加,不存在临界值. (3)支化和交联. 交联可以有效地增强分子链间的联系,使分子链不易发生相对滑移,随着交联度的提高,往往不易发生大的形变,强度增高。分子链支化程度增加,分子间的距离增加,分子间的作用力减小,因而使拉伸强度降低,但冲击强度会提高.

(4)结晶和取向. 结晶度增加,对提高拉伸强度、弯曲强度和弹性模量有好处。如果结晶度太高,则要导致冲击强度和断裂伸长率的降低,高聚物材料就要变脆,反而没有好处。如果在缓慢的冷却和退火过程中生成了大球晶的话,那么高聚物的冲击强度就要显著下降。结晶尺寸越小,强度越高。取向使材料的强度提高几倍甚至几十倍。另外取向后可以阻碍裂缝向纵深方向发展。

(5)应力集中物包括裂缝、银纹、杂质等缺陷在受力时成为应力集中处,它们会成为材料破坏的薄弱环节,断裂首先在此处发生,严重降低材料的强度,是造成高聚物实际强度与理论强度这间巨大差别的主要原因之一。纤维的直径越小,强度越高,这是由于纤维越细,纤维皮芯差别就越小,缺陷出现的概率就越小。根据这个原理,用玻璃纤维增加塑料可以得到高强度的玻璃钢。

缺陷的形状不同,应力集中系数也不同,锐口的缺陷的应力集中系数比钝口的要大得多,因为它造成更大的应力集中,使最大应力大大超过材料的破坏强度,致使制件从这小裂缝开始发生破坏。根据这一道理,一般制品的设计总是尽量避免有尖锐的转角,而是将制品的转弯昝做成圆弧形的。 (6)添加剂。塑剂、填料、增强剂和增韧剂都可能改变材料的强度。增塑使分子间作用力减小,从而降低了强度。另一方面,由于增塑剂使链段运动能力增强,故随着增塑剂含量的增强,材料的冲击强度提高。惰性填料(如CaCO3)只降低成本,强度也随着降低;活性填料有增强作用,如炭黑对天然橡胶的补强效果。纤维状填料有明显的增强作用。塑料增韧的方法是共混或共聚,用少量橡胶作为增韧剂去改进塑料的脆性。

(7)外力作用速度和温度。 在拉伸试验中提高拉伸速度和降低温度都会使强度降低。在冲击试验中提高温度会增加冲击强度。由于外力作用速度和温度的改变,甚至会使材料从脆性变为韧性,或反过来. 银纹:很多热塑性塑料,在储存以及使用过程中,由于应力以及环境的影响。往往会在表面出现陶器表面那样的裂纹,这些裂纹由于光的折射,看上去是发亮的,所以称为~。引起高聚物产生银纹的基本原因有:①力学因素(应力的存在,这里的应力指拉伸应力,纯压缩力不会产生银纹)。②环境因素(同某些化学物质接触)。

一些聚合物在屈服时会出现银纹(crazing)称屈服银纹。因加工或使用中环境介质与应力的共同作用也会出现银纹,称环境银纹。银纹垂直于应力方向,银纹常使材料变为不透明,称应力发白。银纹与裂纹或裂缝(crack)不同,它质量不等于零(约为本体的40%),仍有一定强度(约为本体的50%),这是由于银纹内尚有高度取向的分子链构成的微纤.银纹是裂缝的前奏,但材料在受力形成银纹时吸收了功,因而产生银纹有利于改善材料脆性。

应力集中:如果材料存在缺陷,受力时材料内部的应力平均分布状态将发生变化,使缺陷附近局部范围内的应力急剧地增加,远远超过应力平均值,这种现象称为~。

4.2 高弹性

1 橡胶的使用温度范围

Tg是橡胶的使用下限温度,分解温度(decomposition temperature)Td是使用的温度上限。研究橡胶弹性的意义在于改善其高温耐老化性能,提高耐热性和设法降低其玻璃化温度,改善耐寒性。

(1) 改善高温耐老化性能,提高耐热性。 由于橡胶主链结构上往往含有大量双键,在高温下易于氧化裂解或交联,从而不耐热。改变主链结构使之不含或只含有少数双键,如乙丙橡胶等有较好的耐热性。取代基是供电的,如甲基、苯基等易氧化,耐热性差;取代基是吸电的,如氯,则耐热性好。交联键含

17

硫少,键能较大,耐热性好。交联健是C-C或C-O,耐热性更好.

(2) 降低玻璃化温度,改善耐寒性。耐寒性不足的原因是由于在低温下橡胶会发生玻璃化转变或发生结晶,从而导致橡胶变硬变脆和更丧失弹性。造成玻璃化的原因是分子相互接近,分子之间相互作用加强,以致链段运动被冻结。因些任何增加分子链的活动,削弱分子间的相互作用的措施都会使玻璃化温度下降,结晶是高分子链或链段的规整排列,它会大大增加分子间的相互作用力,使聚合强度和硬度增加,弹性下降。因此任何降低聚合物的结晶能力和结晶速度的措施,均会增加聚合物的弹性,提高耐寒性。利用共聚、增塑等方法降低Tg,能改善耐寒性。只有在常温下不易结晶的聚合物才能成为橡胶,而增塑或共聚也有利于降低聚合物的结晶能力而获得弹性。

2 高弹性的特点和热力学分析

1) 高弹性的特点

①弹性模量很小,而形变量很大,高聚物高弹模量随温度升高而正比地增加。橡胶是由线形的长链分子组成的,由于热运动,这种长链分子在不断地改变着自己的形状,因此在常温下橡胶的长链分子处于蜷曲状态。当外力使蜷曲的分子拉直时,由于分子链中各个环节的热运动,力图恢复到原来比较自然的蜷曲状态,形成了对抗外力的回缩力,正是这种力促使橡胶形变的自发回复,造成形变的可逆性。但是这种回缩力毕竟是不大的,所以橡胶在外力不大时就可以发生较大的形变,因而弹性模量很小。 ②形变需要时间。橡胶是一种长链分子,整个分子的运动或链段的运动都要克服分子间的作用力和内摩擦力。一般情况下形变总是落后于外力,所以橡胶发生形变需要时间。

③形变时有热效应,即拉伸是放热,回缩时吸热,这种现象称Gough-Joule效应。普通固体材料与之相反,而且热效应极小。

高弹性的本质上是熵弹性。

2) 橡胶弹性的热力学分析

把热力学第一定律和第二定律用于高弹形变,则橡胶形迹后的张应力可以看成是由熵的变化和内能的变化两部分组成的.

??u???S?f???T?fu?fS ?????l?T,V??l?T,V上式的物理意义是:外力作用在橡胶上,一方面使橡胶的内能随着伸长而变化,另一方面使橡胶的

熵随着伸长而变化。或者说,橡胶的张力是由于变形时内能发生变化和熵发生变化引起的。由于熵不能直接测定,上式变换成

??u???f?f???T???

?l?T??T,V??l,V上式的物理意义是:在试样的长度l和体积V维持不变的情况下,试样张力f随温度T的变化。这是可以直接从实验测量的。验证实验时,将橡胶试样等温拉到一定长度,在定长的情况下测定不同温度下的张力f,以f对T作图,得到一直线,直线的截距为fu.结果发现,fu?0,即橡胶拉伸时内能几乎不变,而主要是熵的变化.这种只有熵才有贡献的弹性称为熵弹性。

??S?f??T??,拉伸时分子链由混乱变为规则取向,甚至结晶,所以dS<0,根据热力学第二定

??l?T,V律,dQ=TdS,dQ<0,这就是为什么橡胶拉伸时放热的原因.

外力不引起内能变化,这只是理想的情况。实现上橡胶在拉伸时分子链构象发生了改变,显然反式、

18

左旁式和右旁式等构象在能量上是不等的,所以内能变化不可避免,只是变化不大而已。较细微的实验发现,当伸长率小于10%时,f?T曲线的斜率会出现负值,这种现象称为“热弹转变现象”或(“热弹倒置现象”)。这是由于实验是在一定的拉伸长度下做的,而试样热胀冷缩, l0随着温度在变化.从而在低伸长率时,橡胶试样的热膨胀占优势,温度越高,张力越低,斜率为负.如果把一定的拉伸长度l改为一定的伸长率??l/l0,直线就不会出现负斜率了.

4.3 粘弹性

1 聚合物的力学松驰现象

粘弹性:聚合物的形变的发展具有时间依赖性,这种性质介于理想弹性体和理想粘性体之间,称为~.。弹性是一种力学松弛行为。粘弹性是高分子材料的一个重要的特性。

力学松驰:高聚物的力学性质随时间的变化称为~。 (1)静态粘弹性现象

按外力(?)、形变(?)、温度(T)和时间(t)四参量变化关系不同,有四种力学行为,它们是固定两个参量研究另两个参量之间的关系

力学性质四参量之间的关系

力学行为曲线 热机械曲线 应力-应变曲线

?

固定 改变

?

改变 改变

T 改变 固定

t 固定 固定

所研究的关系

??f(T)?,t

??f(?)T,t??f(t)?,T

蠕变曲线 应力松驰曲线

固定 改变

改变 固定

固定 固定

改变 改变

??f(t)?,T

蠕变(creep):就是在一定温度和较小的恒定应力下,聚合物形变随时间而逐渐增大的现象。蠕变反映了材料的尺寸稳定性和长期负载能力。

普弹形变:当高分子材料受到外力作用时,分子链内部键长和键角立刻发生变化,这种形变量是很小的,称为~。

高弹形变:是分子链通过链段运动逐渐伸展的过程,形变量比普弹形迹要大得多,但形变与时间成指数关系。

粘性流动:分子间没有化学交联的线型高聚物,会产生分子间的相对滑移,称为~。

外力除去后粘性流动是不能回复的,因此普弹形变和高弹形变称为可逆形变,而粘性流动称为不可逆形变。

应力松驰(stress relaxtion):就是在固定的温度和形变下,聚合物内部的应力随时间增加而逐渐减弱的现象。

应力松驰和蠕变是一个问题的两个方面,都反映高聚物内部分子的三种运动情况,当高聚物一开始被拉长时,其中分子处于不平衡的构象,要逐渐过渡到平衡的构象,也就是链段顺着外力的方向运动以减少或消除内部应力。如果温度很高,远远超过Tg,如常温下的橡胶,链段运动时受到的内摩擦力很小,应力很快就松驰掉了,甚至可以快到几乎觉察不到的地步。如果温度太低,比Tg低很多,如常温下的塑料,虽然链段受到很大的应力,但是由于内摩擦力很大,链段运动的能力很弱,所以应力松驰极慢,也

19

就不容易觉察得到。只有在玻璃化温度以上不远,链段在外力下可以运动,但运动时受到的内摩擦力又较大,只能缓慢运动,则可观察到较明显的蠕变现象。

影响蠕变和应力松驰的因素有:

①结构(内因)。一切增加分子间作用力的因素都有利于减少蠕变和应力松驰,如增加相对分子质量、交联、结晶、取向、引入刚性基团、添加填料等。

②温度或外力(外因).温度太低(或外力太小),蠕变和应力松驰慢且小,短时间内观察不到;温度太高(或外力太大),形变发展很快,形变以粘流为主,也观察不到.只有在玻璃化转变区才最明显。

(2)动态粘弹性现象

动态粘弹性现象:是在交变应力或交变应变作用下,聚合物材料的应变或应力随时间的变。 滞后(retardation):是高聚物在交变应力作用下,应变落后于应力变化的现象。

高聚物的滞后现象与其本身的化学结构有关,一般刚性分子的滞后现象小,柔性分子的滞后现象严重。然而滞后现象还受到外界条件的影响,如果外力作用的频率低,链段来得及运动,滞后现象很小;外力作用频率很高,链段根本来不及运动,聚合物好像一块刚硬的材料,滞后现象就很小;只有外力作用频率不太高时,链段可以运动,但又跟不大上,才出现明显的滞后现象。改变温度也发生类似的影响,在外力的频率不变的情况下,提高温度,会链段运动加快,当温度很高时,形变几乎不滞后于应力的变化;温度化很低时,链段运动速度很慢,在应力增长的时间内形变来不及发展,因而也无所谓滞后;只有在某一温度,约玻璃化温度上下几十度的范围内,链段能充分运动,但又跟不上,所以滞后现象严重。因此增加外力的频率和降低温度对滞后现象有着相同的影响。

内耗(internal friction):是存在滞后现象,每一次拉伸-回缩循环中所消耗的功,消耗的功转为热量被释放。

拉伸时外力对高聚物体系做的功,一方面用来改变分子链段的构象,另一方面用来提供链段运动时克服链段间内摩擦所需要的能量。回缩时,伸展的分子链重新蜷曲起来,高聚物体系对外做功,但是分子链回缩时的链段运动仍需克服链段间的摩擦阻力。这样一个拉伸-回缩循环中,有一部分被损耗掉,转化为热。内摩擦阻力越大,滞后现象越严重,消耗的功也越大,即内耗越大。

应力的变化为: ?(t)??0sin?t

应变的变化为: ?(t)??0sin(?t??)

?0,?0分别为最大应力和最大应变(正弦波的振幅); ?为角频率; ?为应变发展落后于应力的相

位差,又称力学损耗角.应变总是落后于应力的变化,从分子机理上是由于链段在运动时受到内摩擦的作用. ?越大,说明链段运动越困难.

滞后圈:橡胶拉伸和回缩的两条应为-应变曲线构成的闭合曲线称为~。滞后圈的大小等每一个拉伸-回缩循环中所损耗的功,即

?W????(t)d?(t)?2?/?0???(t)d?(t)dt ??0?0??sin?tcos(?t??)dt

???0?0sin?常用tan?来表示内耗的大小.

影响内耗的因素

:①结构(内因).侧基数目越多,侧基越大,则内耗越大。

②温度和外力作用频率(外因). 只有在玻璃化转变区内耗最为明显,因而通过tan?-T曲线(

高分子物理考研概念及要点、考点总结(强烈推荐)

?Acos????)上的法应力.15??n?FnA??Fcos?A???0cos?2当?=0时有最大值,??n??0,??2当??0sin?切应力为??s?Fs?Fsin??45时有最大值,??s?0?A?A?22也就是说,抗剪切强度总是比抗张强度低,由于分子链间的滑移总是比分子链断
推荐度:
点击下载文档文档为doc格式
7rua8511yy3fmdy9vdb7
领取福利

微信扫码领取福利

微信扫码分享