基于多传感器的地面移动目标识别技术研究
李伟帅;姜月秋
【期刊名称】《光电技术应用》 【年(卷),期】2016(031)003
【摘要】Based on traditional ground target recognition systems, a new ground target recognition system based on multi-sensor information fusion, using visible light sensors and infrared sensors, is developed in order to get effective target information in the cases of night, rain, snow and smog. Firstly, Gaussian template mean filter is adopted to the visible light image, and median filter is adopted to the infrared image. And then, the inter frame differ?ence method and background difference method are combined to realize the detection of the moving target. An algo?rithm based on the coordinates of the center of gravity connected domain mark is presented and the target area is lo?cated successfully. Secondly, the Haar-like rectangular features are used to represent the vehicle, the original char?acteristics library is expanded and rotation single rectangle features are added to describe the vehicle shadow re?gion. Finally, the traditional AdaBoost algorithm is improved and the visible light and infrared vehicle classifier is trained successfully. Experimental results show that the system has some practical value and research significance.%在传统的地面目标识别系统上,综合运用可见光和红外传感器,开发了基于多传感器信息融合的地面目标识别系统,有效地解决了
在夜晚、雨雪天气和浓烟浓雾遮挡的情况下,能够获取有效的目标信息。首先,分析研究确定对可见光图像进行高斯模板均值滤波,对红外图像进行中值滤波处理。然后运动目标检测运用了帧间差分法和背景差分法结合的检测算法。并且研究了一种基于连通域重心坐标标记的算法,并成功定位了目标区域。其次,使用Haar-like矩形特征来表达车辆,对原有特征库进行扩展,添加旋转单一矩形特征来描述车底阴影区域。最后,对传统AdaBoost算法作出了改进,成功训练出可见光和红外车辆分类器。结果证明,该系统具有一定实用价值和研究意义。
【总页数】7页(62-67,80)
【关键词】目标识别;运动目标检测;Haar-like矩形特征;车辆分类器 【作者】李伟帅;姜月秋
【作者单位】沈阳理工大学 通信与网络工程中心,沈阳 110159;沈阳理工大学 通信与网络工程中心,沈阳 110159 【正文语种】中文 【中图分类】TP212.4 【文献来源】
https://www.zhangqiaokeyan.com/academic-journal-cn_electro-optic-technology-application_thesis/0201235715749.html 【相关文献】
1.一种基于炮射地面震动传感器的目标识别算法研究 [J], 陈珅培; 王曙光; 宁全利
2.基于多感知无线传感器网络的地面目标识别方法 [C], Wu Wei; 吴蔚; Xu
Jianping; 徐建平; Xiong Zhaohua; 熊朝华
3.基于支持向量机的多传感器地面目标识别的融合研究 [J], 问来彦
4.基于D-S证据理论多传感器数据融合的无线传感器网络目标识别研究 [C], 段渭军; 宋海涛; 王福豹
5.基于多超声波传感器的移动机器人目标识别 [J], 陈春林; 陈宗海; 卓睿
以上内容为文献基本信息,获取文献全文请下载