4、试述沸腾换热过程中热量传递的途径。
答:半径R≥Rmin的汽泡在核心处形成之后,随着进一步地的加热,它的体积将不断增大,此时的热量是以导热方式输入, 其途径一是由汽泡周围的过热液体通过汽液界面输入, 另一是直接由汽泡下面的汽固界面输入,由于液体的导热系数远大于蒸汽,故热量传递的主要途径为前者。 当汽泡离开壁面升入液体后,周围过热液体继续对它进行加热,直到逸出液面,进入蒸汽空间。
5、两滴完全相同的水滴在大气压下分别滴在表面温度为120℃和400℃的铁板上,试问滴在哪块板上的水滴先被烧干,为什么?
答:在大气压下发生沸腾换热时,上述两水滴的过热度分别是℃和℃,
由大容器饱和沸腾曲线,前者表面发生的是核态沸腾,后者发生膜态沸腾。虽然前者传热温差小,但其表面传热系数大,从而表面热流反而大于后者。所以水滴滴在120℃的铁板上先被烧干。 二、定量计算
主要包括:膜状凝结的分析与计算;沸腾换热的分析与计算。
1、压力为0.7×10Pa的饱和水蒸气,在高为0.3m,壁温为70℃的坚直平板上发生膜状凝结,求平均表面传热系数及平板每米宽的凝液量。
解:Ps=0.7×10Pa的饱和水蒸气对应的饱和温度ts=90℃,
55
液膜平均温度
℃
凝液(水)的物性参数:kg/m,
3
W/(m·K),
ts=90℃对应的汽化潜热:r=2283.1kJ/kg。 先假定液膜流动处于层流:
检验流态
所以,假设层流正确。
每米宽平板的凝液量
2、一房间内空气温度为25℃,相对湿度为75%。一根外径为30mm,外壁平均温度为15℃的水平管道自房间穿过。空气中的水蒸气在管外壁面上发生膜状凝结,假定不考虑传质的影响。试计算每米长管子的凝结换热量。并将这一结果作分析:与实际情况相比,这一结果是偏高还是偏低?
解:本题房间空气的相对温度为75%,因而从凝结观点有25%的不凝结气体即空气。先按纯净蒸气凝结来计算。
25℃的饱和水蒸气压力
Pa,
此时水蒸气分压力
Pa
其对应饱和温度为
℃
液膜平均温度
℃
凝液物性参数,,
汽化潜热表面传热系数:
3、在1.013×10Pa的绝对压力下,水在表面温度为117℃的铜管外表面上进行大容器核态沸腾。求此情况下铜管外表面上的沸腾换热系数h和单位面积的汽化率
?
5
解:由饱和压力查得水的饱和温度ts=100℃,r=2257.1×103J/kg。
沸腾换热系数为:
h=0.1425△tp=0.1425×(117-100)×(1.013×105)=3.339×104W/(m·℃) 单位面积的汽化率为:
2.330.5
2.33
0.5
2
三、本章提要
以下摘自赵镇南著,高等教育出版社,出版日期:2002年7月第1版《传热学》
就一般情况来说,沸腾和凝结都属于强对流换热方式,这两种换热类型在工业应用中占有极其重要的地位,但它们的物理机制和影响因素与单相对流换热差别很大。 1.沸腾换热
大空间饱和沸腾(也称为池沸腾)是研究的重点,其中又以核态沸腾和膜态沸腾两种形态为主。汽泡的发生、发展、跃升并脱离加热表面的过程对池沸腾换热的强度起决定性作用。理解水的沸腾曲线和各参数之间的相互关系将有助于掌握沸腾的基本特征。值得特别注意的是所渭临界热流密度(CHF),以及通过调整壁面热流密度来控制沸腾过程的时候容易引起的超温问题。
核态沸腾表面传热系数的计算关系式很多,形式上差异较大,计算结果的误差甚至可能达到100%。对加热表面状况的定量描述始终是沸腾研究的难点,也是重点之一。目前常采用的办法仍以根据实验得出的经验常数为主。确定临界热流密度对给出实际沸腾运行工况点提供了有益的参照。计算膜态沸腾则必须注意与辐射传热方式相结合。
管内对流沸腾换热在工业上用途广泛、意义重大,但是其两相流动状态和传热机理太过复杂。多组分混合液体核态沸腾受质量传递(浓度扩散)的影响很大,汽泡成长减慢,表面传热系数比单组分低得多。 影响大空间饱和核态沸腾的主要因素包括:液体的热物性(粘度、密度、表面张力、汽化潜热和比热容等),加热表面的材料和表面状况,液体的压力,加热面的大小和朝向,液位以及不凝气体的含量等。 2.凝结换热
表面凝结有两种基本形态——膜状凝结和珠状凝结,后者的表面传热系数大大高于前者,但在工业设备中实际发生的都是膜状凝结。
努塞尔竖壁膜状凝结理论解揭示了层流膜状凝结的换热以通过膜层的导热为主的本质,这无疑为强化膜状凝结换热指明了方向。
沿竖壁或竖管的膜状凝结液膜也可能发展成湍流,使表面传热系数得以明显提高。判断凝结液膜流动状态仍然用雷诺数,但其表达式和单相对流时很不一样。凝结液膜从层流转变到湍流的临界雷诺数等于1600。
管内凝结换热在工业上有很广泛的用途。和管内沸腾—样,它也与两相流的流型及表面状况等因素有关,是一个比较复杂的问题。
多组分混合物的膜状凝结同样频繁地出现在化工和制冷等重要的应用领域里。和多组分沸腾相同,它的表面传热系数也明显地低于单一组分时。
影响膜状凝结换热强弱的主要因素包括不凝气体含量、蒸气的流速与方向(汽液界画上的切应力)以及凝结表面的状况。
珠状凝结迄今为止仍是实验室里的研究课题,主要目标在于形成并维持长期稳定的珠状凝结状态。采用的方法不外乎改变凝结表面状况或者改变凝结液的物性。 3.强化传热技术
强化核态沸腾的基本着眼点在于设法增加活化核化点的数目。为此主要通过对加热表面的改性处理,如多孔表面、人工粗糙表面或涂层等措施来实现。管内沸腾换热的强化则大都采用各种内肋或者内螺纹管。 强化膜状凝结换热的出发点在于促进液膜的排泄以尽可能地使液膜厚度减薄。格雷戈里格效应管是实现这一想法的良好典范。后来研制的各种膜状凝结强化管大都是其思想的延续和发展。值得注意的是,近年来对双面同时强化的技术和元件的研究日益受到重视和推祟。
热管是一种构思巧妙的高性能传热元件,要根据使用场合的具体情况正确地选择热管工质,并安排外部的换热结构。对于冷源、热源均为气体,或者是液体的情况,主要的传热热阻显然都在外部。
热辐射基本定律部分
一、基本概念
主要包括热辐射基本概念及名词解释、黑体辐射基本定律、实际物体辐射特性及其应用。 1、北方深秋季节的清晨,树叶叶面上常常结霜。试问树叶上、下去面的哪一面结箱?为什么? 答:霜会结在树叶的上表面。因为清晨,上表面朝向太空,下表面朝向地面。而太空表回的温度低于摄氏零度,而地球表面温度一般在零度以上。由于相对树叶下表面来说,其上表面需要向太空辐射更多的能量,所以树叶下表面温度较高,而上表面温度较低且可能低于零度,因而容易结霜。
2、如图所示的真空辐射炉,球心处有一黑体加热元件,试指出①,②,③3处中何处定向辐射强度最大?何处辐射热流最大?假设①,②,②处对球心所张立体角相同。
答:由黑体辐射的兰贝特定律知,定向辐射强度与方向无关。故Il=I2=I3。而三处对球心立体角相当,但与法线方向夹角不同,θ1>θ2>θ3。所以①处辐射热流最大,③处最小。
3、有—台放置于室外的冷库,从减小冷库冷量损失的角度出发,冷库外壳颜色应涂成深色还是浅色? 答:要减少冷库冷损,须尽可能少地吸收外界热量,而尽可能多地向外释放热量。因此冷库败取较浅的颜色,从而使吸收的可见光能量较少,而向外发射的红外线较多。 4、何谓“漫─灰表面”?有何实际意义?
答:“漫─灰表面”是研究实际物体表面时建立的理想体模型.漫辐射、漫反射指物体表面在辐射、反射时各方向相同. 灰表面是指在同一温度下表面的辐射光谱与黑体辐射光谱相似,吸收率也取定值.“漫─灰表面”的实际意义在于将物体的辐射、反射、吸收等性质理想化,可应用热辐射的基本定律了。大部分工程材料可作为漫辐射表面,并在红外线波长范围内近似看作灰体.从而可将基尔霍夫定律应用于辐射换热计算中。
5、你以为下述说法:“常温下呈红色的物体表示此物体在常温下红色光的单色发射率较其它色光(黄、绿、兰)的单色发射率为高。”对吗?为什么?(注:指无加热源条件下)
答:这一说法不对。因为常温下我们所见到的物体的颜色,是由于物体对可见光的反射造成的.红色物体正是由于它对可见光中的黄、绿、蓝等色光的吸收率较大,对红光的吸收率较小,反射率较大形成的. 根据基而霍夫定律ε发射率要小。
6、某楼房室内是用白灰粉刷的, 但即使在晴朗的白天, 远眺该楼房的窗口时, 总觉得里面黑洞洞的, 这是为什么?
答:窗口相对于室内面积来说较小, 当射线(可见光射线等)从窗口进入室内时在室内经过多次反复吸收、反射, 只有极少的可见光射线从窗口反射出来, 由于观察点距离窗口很远, 故从窗口反射出来的可见光到达观察点的份额很小, 因而就很难反射到远眺人的眼里, 所以我们就觉得窗口里面黑洞洞的. 7、实际物体表面在某一温度T下的单色辐射力随波长的变化曲线与它的单色吸收率的变化曲线有何联系?如巳知其单色辐射力变化曲线如图所示,试定性地画出它的单色吸收率变化曲线。 答:从图中可以分析出,该物体表面为非灰体,
λ
=αλ,故常温下呈红色的物体,其常温下的红色光单色发射率较其他色光的单色光