初一数学辅导资料
学好数理化,走遍天下都不怕,这句话告诉我们一个很直白的道理,学好数学真的很重要,今天,100教育小编来和大家分享一下初一数学辅导资料。
第一章:有理数
知识要求:
1、有具体情境中,理解有理数及其运算的意义;
2、能用数轴上的点表示有理数,会比较有理数的大小。
3、借助数轴理解相反数与绝对值的意义,会求有理数的相反数与绝对值。
4、经历探索有理数运算法则和运算律的过程;掌握有理数的加、减、乘、除、乘方及简单的混合运算;理解有理数的运算律,并能利用运算律简化运算,及能运用有理数及其运算律解决简单的实际问题。 知识重点:
绝对值的概念和有理数的运算(包括法则、运算律、运算顺序、混合运算)是本章的重点。 知识难点:
绝对值的概念及有关计算,有理数的大小比较,及有理数的运算是本章的难点。 考点:
绝对值的有关概念和计算,有理数的有关概念及混合运算是考试的重点对象。 知识点:
一、有理数的基础知识 1、三个重要的定义:
(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数。 2、有理数的分类:
(1)按定义分类: (2)按性质符号分类:
???正整数?正整数??正有理数??整数0??正分数?????负整数有理数? 有理数?0 ???负整数正分数??分数??负有理数????负分数?负分数???3、数轴
数轴有三要素:原点、正方向、单位长度。画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。在数轴上的所表示的数,右边的数总比左边的数大,所以正数都大于0,负数都小于0,正数大于负数。 4、相反数
如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数。0的相反数是0,互为相反的两上数,在数轴上位于原点的两则,并且与原点的距离相等。 5、绝对值
(1)绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离。
(2)绝对值的代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数,可用字母a表示如下:
(a?0)?a?a??0(a?0)
??a(a?0)?(3)两个负数比较大小,绝对值大的反而小。 二、有理数的运算 1、有理数的加法
(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;互为相反的两个数相加得0;一个数同0相加,仍得这个数。 (2)有理数加法的运算律:
加法的交换律 :a+b=b+a;加法的结合律:( a+b ) +c = a + (b +c) 用加法的运算律进行简便运算的基本思路是:先把互为相反数的数相加;把同分母的分数先相加;把符号相同的数先相加;把相加得整数的数先相加。 2、有理数的减法
(1)有理数减法法则:减去一个数等于加上这个数的相反数。
(2)有理数减法常见的错误:顾此失彼,没有顾到结果的符号;仍用小学计算的习惯,不把减法变加法;只改变运算符号,不改变减数的符号,没有把减数变成相反数。
(3)有理数加减混合运算步骤:先把减法变成加法,再按有理数加法法则进行运算; 3、有理数的乘法
(1)有理数乘法的法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
(2)有理数乘法的运算律:交换律:ab=ba;结合律:(ab)c=a(bc);交换律:a(b+c)=ab+ac。 (3)倒数的定义:乘积是1的两个有理数互为倒数,即ab=1,那么a和b互为倒数;倒数也可以看成是把分子分母的位置颠倒过来。 4、有理数的除法
有理数的除法法则:除以一个数,等于乘上这个数的倒数,0不能做除数。这个法则可以把除法转化为乘法;除法法则也可以看成是:两个数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都等于0。 5、有理数的乘法
(1)有理数的乘法的定义:求几个相同因数a的运算叫做乘方,乘方是一种运算,是几个相同的因数的特殊乘法运算,记做“a”其中a叫做底数,表示相同的因数,n叫做指数,
n表示相同因数的个数,它所表示的意义是n个a相乘,不是n乘以a,乘方的结果叫做幂。 (2)正数的任何次方都是正数,负数的偶数次方是正数,负数的奇数次方是负数 6、有理数的混合运算
(1)进行有理数混合运算的关建是熟练掌握加、减、乘、除、乘方的运算法则、运算律及运算顺序。比较复杂的混合运算,一般可先根据题中的加减运算,把算式分成几段,计算时,先从每段的乘方开始,按顺序运算,有括号先算括号里的,同时要注意灵活运用运算律简化运算。
(2)进行有理数的混合运算时,应注意:一是要注意运算顺序,先算高一级的运算,再算低一级的运算;二是要注意观察,灵活运用运算律进行简便运算,以提高运算速度及运算能力。
7、科学记数法:一般地,一个大于10的数可以表示成 a?10的形式,其中a是只有一位整数位的数,n是正整数,这种记数法叫做科学记数法。(a相当于是把小数点移到第一位即最高位数的后面得到的一个大于等于1小于10的数,n等于这个原数的整数位减去1,也可以看成是小数点移动的位数。) 练习:
一、选择题:
1、下列说法正确的是( )
A、非负有理数即是正有理数 B、0表示不存在,无实际意义 C、正整数和负整数统称为整数 D、整数和分数统称为有理数 2、下列说法正确的是( )
A、互为相反数的两个数一定不相等 B、互为倒数的两个数一定不相等
C、互为相反数的两个数的绝对值相等 D、互为倒数的两个数的绝对值相等 3、绝对值最小的数是( )
A、1 B、0 C、– 1 D、不存在 4、计算??2??(?24)所得的结果是( )
4nA、0 B、32 C、?32 D、16
5、有理数中倒数等于它本身的数一定是( ) A、1 B、0 C、-1 D、±1 6、(– 3)–(– 4)+7的计算结果是( ) A、0 B、8 C、– 14 D、– 8 7、(– 2)的相反数的倒数是( ) A、
11 B、? C、2 D、– 2 2228、化简:a?4,则a是( )
A、2 B、– 2 C、2或– 2 D、以上都不对 9、若x?1?y?2,则x?y=( )
A、– 1 B、1 C、0 D、3
10、有理数a,b如图所示位置,则正确的是( )