【金识源】(3年高考2年模拟1年原创)最新2013版高考数学 专题09 立
体几何 理 (解析版)
【考点定位】2014考纲解读和近几年考点分布
立体几何在高考中占据重要的地位,通过近几年的高考情况分析,考察的重点及难点稳定,高
考始终把直线与直线、直线与平面、平面与平面平行的性质和判定作为考察重点。在难度上也始终以中等偏难为主,在新课标教材中将立体几何要求进行了降低,重点在对图形及几何体的认识上,实现平面到空间的转化,是知识深化和拓展的重点,因而在这部分知识点上命题,将是重中之重。高考对立体几何的考查侧重以下几个方面: 1.从命题形式来看,涉及立体几何内容的命题形式最为多变 . 除保留传统的“四选一”的选择题型外,还尝试开发了“多选填空”、“完型填空”、“构造填空”等题型,并且这种命题形式正在不断完善和翻新;解答题则设计成几个小问题,此类考题往往以多面体为依托,第一小问考查线线、线面、面面的位置关系,后面几问考查空间角、空间距离、面积、体积等度量关系,其解题思路也都是“作——证——求”,强调作图、证明和计算相结合。2.从内容上来看,主要是:①考查直线和平面的各种位置关系的判定和性质,这类试题一般难度不大,多为选择题和填空题;②计算角的问题,试题中常见的是异面直线所成的角,直线与平面所成的角,平面与平面所成的二面角,这类试题有一定的难度和需要一定的解题技巧,通常要把它们转化为相交直线所成的角;③求距离,试题中常见的是点与点之间的距离,点到直线的距离,点到平面的距离,直线与直线的距离,直线到平面的距离,要特别注意解决此类问题的转化方法;④简单的几何体的侧面积和表面积问题,解此类问题除特殊几何体的现成的公式外,还可将侧面展开,转化为求平面图形的面积问题;⑤体积问题,要注意解题技巧,如等积变换、割补思想的应用。⑥三视图,辨认空间几何体的三视图,三视图与表面积、体积内容相结合。3.从能力上来看,着重考查空间想象能力,即空间形体的观察分析和抽象的能力,要求是“四会”:①会画图——根据题设条件画出适合题意的图形或画出自己想作的辅助线(面),作出的图形要直观、虚实分明;②会识图——根据题目给出的图形,想象出立体的形状和有关线面的位置关系;③会析图——对图形进行必要的分解、组合;④会用图——对图形或其某部分进行平移、翻折、旋转、展开或实行割补术;考查逻辑思维能力、运算能力和探索能力。
【考点pk】名师考点透析
考点一、空间几何体的结构、三视图、直观图
1
【名师点睛】了解柱、锥、台、球体及其简单组合体的结构特征,并能运用这些特征描述现实生活中的简单物体的结构。能画出简单空间几何体的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图。能用平行投影与中心投影两种方法画出简单空间几何体的三视图与直观图。了解空间几何体的不同表示形式。会画某建筑物的视图与直观图。
空间几何体的结构与视图主要培养观察能力、归纳能力和空间想象能力,能通过观察几何体的模型和实物,总结出柱、锥、台、球等几何体的结构特征;能识别三视图所表示的空间几何体,会用材料制作模型,培养动手能力。
【试题演练】
1将正三棱柱截去三个角(如图1所示A,B,C分别是△GHI三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )
考点二、空间几何体的表面积和体积
【名师点睛】理解柱、锥、台的侧面积、表面积、体积的计算方法,了解它们的侧面展开图,及其对计算侧面积的作用,会根据条件计算表面积和体积。理解球的表面积和体积的计算方法。
把握平面图形与立体图形间的相互转化方法,并能综合运用立体几何中所学知识解决有关问题。
【试题演练】
2.已知某几何体的俯视图是如图5所示的矩形,正视图(或称主 视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视 图)是一个底边长为6、高为4的等腰三角形.
(1)求该几何体的体积V; (2)求该几何体的侧面积S.
2
【名师点睛】理解空间中点、线、面的位置关系,了解四个公理及其推论;空间两直线的三种位置关系及其判定;异面直线的定义及其所成角的求法。
通过大量图形的观察、实验,实现平面图形到立体图形的飞跃,培养空间想象能力。会用平面的基本性质证明共点、共线、共面的问题。
【试题演练】
3.如图1,在空间四边形ABCD中,点E、H分别是边AB、AD的中点,F、G分别是边BC、CD上的点,且
CFCG2==,则( ) CBCD3(A)EF与GH互相平行 (B)EF与GH异面
(C)EF与GH的交点M可能在直线AC上,也可能不在直线AC上 (D)EF与GH的交点M一定在直线AC上
图1
交线AC上。选(D)。
点评:本题主要考查公理2和公理3的应用,证明共线问题。利用四个公理来证明共点、共线的问题是立体几何中的一个难点。
3