(Ⅲ)利用(Ⅱ)中所证,根据函数单调性求解不等式即可. 【详解】
(Ⅰ)1?2lg5?1?lg5?lg2,因为a?10, 所以f(1?2lg5)?f(lg2)?10lg2?10?lg2?2?15?. 22(Ⅱ)设?x1,x2?[0,??)且x2?x1,那么
f?x2??f?x1??ax2?a?x2
x2x1x1?x2a?aa?1????11??x1?x1x2x1??a?a??a?a??x2?x1??a?a1x1?x2?a当0?a?1时,ax2?ax1,则ax2?ax1?0, 又x2?x1?0,0?ax2?x1?1,则ax2?x1?1?0,
?a所以f?x??f?x??21x2?ax1??a1x1x2?1?ax1?x2?0,从而f?x2??f?x1?;
当a?1时,ax2?ax1,则ax2?ax1?0, 又x2?x1?0,ax2?x1?1,则ax2?x1?1?0,
?a所以f?x??f?x??21x2?ax1??ax1?x2?1?ax1?x2?0,从而f?x2??f?x1?,
综上可知f(x)在[0,??)单调递增.
?x?(?x)?a?x?ax?f(x), (Ⅲ)由题意可知f(x)的定义域为R,且f(?x)?a?a所以f(x)为偶函数.
所以f(2x?4)?f(x?m)等价于f(|2x?4|)?f(|x?m|), 又因为f(x)在[0,??)单调递增,
所以|2x?4|?|x?m|,即(2x?4)?(x?m), 所以有:?x?[?3,0],3x?(16?2m)x?16?m?0,
22令g(x)?3x?(16?2m)x?16?m,
2222?g(?3)?0?m2?16?0则?,?2,
g(0)?0??m?6m?5?0第 16 页 共 17 页
?(m?4)(m?4)?0,m?4且m??4,或m?5或m?1, ??(m?1)(m?5)?0所以m??4或m?5. 【点睛】
本题考查对数的运算性质,以及利用函数单调性的定义求证指数型函数的单调性,涉及利用函数单调性求解不等式,属综合中档题.
第 17 页 共 17 页