在大多数生物中,ADP、GDP、CDP和UDP四种核苷二磷酸可在核苷二磷酸还原酶的催化下生成相应的脱氧核苷二磷酸dNDP。NADPH为合成的还原力,电子从NADPH向还原酶转移需要经过黄素蛋白和硫氧还蛋白的转递。
DNA合成需要的dTMP是由dUMP甲基化形成的。首先dUDP转换为dUMP(有多条途径,一条是核苷单磷酸激酶催化dUDP与ADP反应生成dUMP和ATP;另一条是dUDP先形成dUP,然后水解生成dUMP和PPi。dCMP经脱氨也可形成dUMP)。dUMP转换成dTMP的反应是由胸苷酸合成酶催化的, N5,N10–CH2-FH4提供一碳单位后,形成二氢叶酸,经二氢叶酸还原酶催化又成为FH4,再在丝氨酸羟甲基转移酶催化下,结合丝氨酸生成N5,N10 –CH2-FH4。
(二)从头合成的调节和抗代谢物 1.调节位点
原核生物和真核生物从头合成的酶不同,途径受到的调节也不同。
大肠杆菌嘧啶核苷酸的合成在三个控制点上受到终产物的反馈抑制。第一
个调节酶是氨甲酰磷酸合成酶,它受UMP反馈抑制。另两个调节酶是天冬氨酸转氨甲酰酶(主要调节位点)和CTP合成酶,它们受CTP的反馈抑制。
在哺乳动物,主要调节酶氨甲酰磷酸合成酶Ⅱ受UMP反馈抑制,PRPP和IMP可以激活该酶。
嘧啶与嘌呤两类核苷酸合成上有协调控制关系,PRPP合成酶是共同需要的酶,可同时接受这两类核苷酸的反馈调节。
2.抗代谢物
5-氟尿嘧啶(5-FU)的结构与胸腺嘧啶相似,在体内经补救合成途径转变为脱氧5-氟尿嘧啶核苷酸后,可抑制胸苷酸合成酶,阻断dUMP合成dTMP。
氨基蝶呤及氨甲蝶呤都是叶酸的结构类似物,能与二氢叶酸还原酶发生不可逆结合,结果阻止四氢叶酸的生成,从而抑制了它参于的各种一碳单位转移反应。氨甲蝶呤的主要作用点是dTMP合成中的一碳单位转移反应。
大多数正常细胞的分裂要比癌细胞慢得多,对氨甲蝶呤的敏感性低。
(三)补救合成
催化UMP补救合成的酶类有尿嘧啶磷酸核糖转移酶,尿苷磷酸化酶,尿苷激酶。催化的反应如下:
尿嘧啶 + PRPP → UMP + PPi 尿嘧啶 + R-1-P → 尿苷+ Pi 尿苷 + ATP → UMP + ADP
第九章 DNA的生物合成(复制)
教学目标:
1.掌握DNA复制的概念、特点和参与复制的酶与蛋白质。比较原核细胞DNA复制与真核细胞DNA复制的不同。
2.掌握反转录的概念、反转录酶、主要反应过程。
3.了解DNA损伤的概念、影响因素和修复方式。 4.了解基因重组、DNA克隆、聚合酶链式反应的概念。 导入:DNA的生物合成反应有三种方式:DNA指导的DNA合成,RNA指导的DNA合成和修复合成。第一种就是DNA复制,是最主要的合成方式。复制是指遗传物质的传代,以母链DNA为模板合成子链DNA的过程。碱基配对规律和DNA双螺旋结构是复制的分子基础,其化学本质是酶促的生物细胞内单核苷酸聚合。本章重点讲述复制的特点、机制和过程。
第一节 DNA的复制
自从1953年Watson和Crick提出了DNA双螺旋结构模型和DNA半保留复制假说后,关于遗传信息的传递,科学界出现了一场空前热烈的探索。遗传信息以密码的形式编码在DNA分子上,通过DNA复制由亲代传递给子代;在子代的生长发育过程中又自DNA转录给RNA,然后翻译成特异的蛋白质,以执行各种功能,使后代现出与亲代相似的遗传性状。
一、DNA的半保留复制(semiconservation replication) 1.概念:DNA复制的一种方式。每条链都可作为合成互补链的模板,合成出的两分子双链DNA,每个分子都是由一条亲代链和一条新链组成。
2.实验证明:1958年,Meselson和Stahl通过一个著名的实验证明了Watson和Crick的推测。实验设计是以大肠杆菌为材料,培养基以15N标记的NH4Cl作为N的惟一来源(重氮培养基)。经过15代传代培养,使其DNA全部变成[15N]DNA。然后转移到轻氮培养基传代培养,每隔一定时间取样,对DNA进行分析(CsCl密度梯度离心),其结果呈规律性的变化:
在0代细菌中,DNA双链中氮的分布为15N/15N,对DNA密度梯度离心,得浮力密度为1.724g/ml;在第1代细菌中,DNA双链中氮的分布由15N/15N转为15N/14N,其浮力密度为1.717g/ml;在第1代以后的细菌中,DNA双链中氮分布有两种,即15N/14N和14N/14N;随着传代次数的增加,双链均含14N的DNA的比重越来越高。
1963年Cairus用放射自显影的方法第一次观察到完整的正在复制的大肠杆菌染色体DNA。
3.意义:半保留复制是DNA复制最重要的特征。这种方式使子代保留了亲代DNA的全部遗传信息,说明DNA在代谢上的稳定性。物种稳定的分子基础就是遗传的相对保守性,体现在代与代之间DNA碱基序列的一致性,或者说某种生物的后代只能是它的同种生物而不是其他。
二、DNA复制的起点和方式
基因组能独立进行复制的单位称为复制子(replicon)。每个复制子都含有控制复制起始的起点(origin),可能还有终止复制的终点(terminus)。
(一)环状DNA双链的复制
大肠杆菌DNA复制始于单一起点或原点(oriC),双向、等速、对称进行。在电镜下复制的起点与复制的DNA部分犹如眼睛,称复制眼,包括两个反向运动的复制叉(replication fork),形成θ型。复制叉移动速度约50000 bp/min。染色体完成复制需要40 min。
某些病毒及噬菌体DNA复制时,可以观察到单向滚环型复
制。在哺乳类动物线粒体DNA复制中发现,两条链的合成是高度不对称,一条链上迅速合成出互补链,另一条则为游离的单链环(即D-环)。
(二)线性DNA双链的复制
真核生物染色体DNA是线性双链分子,含有许多复制起点,因此是多复制子。虽然其复制叉移动慢(1000~3000bp/min),但同时起作用的复制叉数目大,DNA复制的总速度比原核生物还快。
三、与DNA复制有关的酶
DNA指导下的DNA合成,是一个复杂、有序的酶促反应过程,涉及几十种酶和因子参与。
1.DNA聚合酶(polymerase)
1956年Kornberg等首先从大肠杆菌中发现DNA-polI,能催化脱氧核苷酸加到引物链的3′-OH末端,引物延伸方向5′→3′。该酶需要的条件:4种dNTP、Mg2+、DNA模板(template)、引物(primer),此酶有三种活性:5′→3′聚合酶,5′→3′外切酶(切除引物和突变片段),3′→5′外切酶(校正活性)。
70年代初又从大肠杆菌分离出DNA-polⅡ和polⅢ。polⅡ无5′→ 3 ′外切酶活性。polⅢ是大肠杆菌主要的DNA聚合酶,其全酶由10种亚基组成,α、ε、θ组成核心酶,α亚基具有5′→ 3′方向合成DNA的催化活性,ε亚基具有3′→ 5′核酸外切酶的活性,起校对作用。DNA polⅢ为异二聚体,使DNA解开的双链可同时进行复制。这种复杂的亚基结构使其具有更高的忠实性、协同性和持续性。
2.拓扑异构酶(topoisomerase)和解链酶(helicase) 环状DNA的三级结构(超螺旋)存在拓扑异构体,“拓扑”一词原意是指物体做弹性移位而又保持不变的性质。DNA复制时必先要解旋和解链,拓扑异构酶对DNA分子兼有内切酶和连接酶的作用,有I型和Ⅱ型。前者可切断双链中的一条链,使解旋中不致打结(适时又把切口封闭,DNA呈松弛态,这过程不耗能)。后者在无ATP供能时,可同时切开超螺旋状态DNA的两条链,使其松弛,然后将切口封闭(用于分离复制后的两个子环)。在利用ATP时,该酶可使松弛态的DNA变成负超。
解链酶可通过水解ATP供能来解开双链,每解开一对碱基,需水解2分子ATP。该酶和rep蛋白共同参与解链,rep蛋白是沿着前导链的模板(母链)3′→5′方向移动,而解链酶按母链5′→3′方向移动。
3.引物酶(primase)和引发体
DNA聚合酶没有催化两个游离dNTP聚合的能力,而RNA聚合酶依靠模板可酶促游离NTP聚合,生成的一段短RNA引物提供3′- OH末端供dNTP加入、延长。所以,解开双链并不是马上进行复制,先以模板脱氧核苷酸序列,按碱基互补原则合成一小段RNA引物,这一过程称“引发”。引物RNA与模板DNA形成杂交。催化RNA引物合成的RNA聚合酶称引物酶(或引发酶)。该酶只有与相关的蛋白结合为引发体才有明显的活性。引发体是解链酶、DnaC、引物酶和DNA起始复制区组成的复合结构。
4.DNA连接酶(DNA ligase)
催化相邻DNA片段间的连接,即把有缺口的3′- OH末端与相邻核苷酸5′-磷酸连接形成磷酸二酯键,连接反应是耗能
的。大肠杆菌的DNA连接酶以NAD+为能量来源,动物细胞和某些噬菌体以ATP为能量来源。这两个DNA片段必需与同一个互补链结合。
5.单链结合蛋白(single-strand bindingprotein,SSB) 一旦DNA双螺旋解开成单链,SSB便牢固地结合到分开的单链上,防止它们重新形成双螺旋,保证模板链的复制和不被核酸内切酶水解。原核生物的SSB与DNA的结合表现出明显的协同效应,当第一个SSB结合后,其后的SSB与DNA的结合力可提高103倍,且结合迅速扩展,直到全部单链DNA都被SSB覆盖。而真核生物的SSB没有此协同效应,也不象DNA聚合酶那样沿复制方向向前移动,而是不断地结合、脱离,直到复制完成。
6.其他因子
和引发酶结合成引发体的相关蛋白有6种,priA、priB、priC、、dnaB、dnaC、dnaT。与复制过程有关的起始因子、终止蛋白因子等。
四、DNA半不连续复制
DNA分子的两条链是反向平行且互补的,而所有已知的DNA聚合酶的合成方向都是5′→ 3′。这很难说明DNA在复制时两条链同时作为模板合成新的互补链。为了解决这个矛盾,1968年, 日本学者冈崎通过实验研究 (3H标记的脱氧胸苷的密度梯度离心技术),提出了半不连续复制理论。
DNA解链复制时,以3′→ 5′走向为模板的复制链可顺着解链方向延
长,其复制过程是连续的,此链称为前导链(leading strand)。而沿着解链方向5′→ 3′模板链合成的互补链,出现了复制方向与解链方向相反,此时,必须等模板链解出足够长度,在引物3′-OH末端,沿5′→ 3′方向先合成小的DNA片段(冈崎片段),这些片段是不连续的,最后连成一条完整的链,称后随链(lagging strand)。前导链的连续性在许多因素作用下也会出现不连续性。如模板链的损伤、一条链上有多个复制起始点、复制因子和底物供应不足等,都会引起前导链复制的中断,并从一新的起始点开始复制。前导链和后随链是指同一复制叉上的两条链。
五、原核生物DNA的复制过程 (一)复制的起始
这是复制中较复杂的环节,参与因子较多,是把DNA解成单链和生成引物。
E.coli复制始于单个位点(oriC),有245bp的序列,一般含两个反向重复单位和三个串联重复单位。
解链是一种高速的反向旋转,其下游势必发生打结现象。拓扑酶通过切断、旋转和再连接作用,实现DNA超螺旋的转型,正超螺旋变负超;DnaA蛋白辩认并结合oriC重复序列的位点,解链酶(DnaB蛋白,rep蛋白)解开双链(DnaC蛋白协助解链);SSB和引发酶进入,生成的引发体到达适当位置就可按模板催化NTP的聚合,生成引物,这标示复制起始的完成。后随链是不连续复制的,引发体需多次生成。
(二)复制的延长
DNA-polⅢ在引物的3′-OH端,按模板碱基序,催化加入的dNTPs生成磷酸二酯键,子链的延长按5′→3′方向延伸,其速度相当快。E.coli基因组,即全套基因染色体上的DNA约3
000kb。按20分钟繁殖一代,每秒加入的核苷酸数达2500bp。随从链先是生成若干短的冈崎片段,片段之间的连接由RNA酶水解去掉引物,留下的空缺(gap)由DNA-polI催化填补,再由DNA连接酶将两个片段连在一起。
(三)复制的终止
一般说来,复制的终止不需要特定的信号,未发现有关的酶。E.coli环状DNA是双向复制,起始点和终点刚好把环分为两个半圆,两个方向各进行180度,复制至最后的3′-OH末端,可延长填补起始复制时形成的引物所留下的缺口。
六、真核生物DNA的复制
真核生物基因组比原核生物大得多,其染色体以核小体为结构单位组成,因此DNA的复制过程相当复杂。其特点:
1.有多个复制原点,可分段复制。一个复制叉的移动速度虽比原核生物慢,且不连续,但利用多个复制原点可加速复制,所以总的复制速度还是快的。
2.真核生物DNA聚合酶有5种,以α、β、γ、δ、ε命名。polα主要催化合成引物,随从链多次合成的引物包含有DNA片段。polδ有解螺旋酶的活性,催化链的延长。β与ε修复DNA,γ复制线粒体DNA。
3.端粒复制
端粒(telomere)是真核生物染色体线性DNA分子末端的结构。形态学上,像两顶帽子盖在染色体两端。端粒在维持染色体的稳定性和DNA复制的完整性上有重要作用。
线性DNA复制终止时,新链最早出现的5′-端引物被降解后,留下的空缺没法填补,导致DNA末端有可能缩短。事实上染色体多次复制并没有变短,这是因为端粒有一特化的DNA序,富含T、G短序列的多次重复。端粒酶可催化端粒的复制。
端粒酶(telomerase)是1985年发现的一种核糖核蛋白酶,由三部分组成:端粒酶RNA、端粒酶协同蛋白和端粒酶逆转录酶。该酶兼有提供RNA模板和催化逆转录的功能,通过一种称为爬行模型的机制维持染色体的完整。端粒酶结合后,依其RNA模板,在端粒单链3′-OH为引物基础上,不断反向转录,催化其延长,到一定长度,形成G-G配对的发夹结构,3′-OH端回折与互补链方向一致,端粒酶脱落,由DNA聚合酶催化,按新延伸的链为模板合成互补链。DNA末端复制变短和用端粒酶增加其长度,这两个过程处于平衡状态,所以染色体保持大致相同的长度。
第二节 反转录
一、反转录概念和反转录酶
反转录(reverse transcription)是以RNA为模板,由反转录酶催化dNTP合成DNA,又称逆转录或RNA指导的DNA合成。
1970年Temin和Baltimore分别从致癌RNA病毒中发现RNA指导的DNA聚合酶。逆转录酶催化的DNA合成反应要求有模板和引物,以4种脱氧核苷三磷酸为底物,此外还需适当浓度的Mg2+和还原剂(以保护酶蛋白中的巯基),DNA链的延长方向是5′→3′。此酶是一种多功能酶,兼有3种酶的活力。①RNA指导的DNA聚合酶活力,即利用RNA为模板,在其上合成互补的DNA,形成RNA-DNA杂合分子;②核糖核酸酶H的活力,专
门水解RNA-DNA杂合分子的RNA。③DNA指导的 DNA聚合酶的活力,在新合成的DNA链上合成另一条互补DNA链,形成双链DNA分子。
二、反转录过程和生物学意义
所有已知的致癌RNA病毒都含有反转录酶,又称反转录病毒。其生活周期十分复杂,最关键的是反转录过程。有10步反应,需反转录酶两次转换模板。先依RNA为模板先合成一条互补DNA(cDNA)链,形成RNA-DNA杂交体;随后核糖核酸酶(RNaseH)水解它,除去RNA得cDNA单链( 称负链DNA,记作DNA-);继而以DNA(-)为模板合成DNA(+)。
反转录的发现证明遗传信息可以从RNA到DNA,传统的“中心法则”得以修正,1975年二人获诺贝尔生理学与医学奖。
研究表明,反转录病毒有致癌作用,其基因组含癌基因(oncogene,onc)。正常人的细胞基因组含原癌基因(pro-onc),在胚胎发育期有明显的表达,而成年个体极少表达。当一些化学致癌物诱发这些基因表达时,细胞将发生癌症(白血病等)。1983年发现的HIV是一类反转录病毒,感染人的T淋巴细胞即杀死细胞,造成人的免疫系统损伤,引起AIDS。
第三节 DNA损伤与修复
DNA复制的保真性是维持物种相对稳定的主要因素,而DNA复制时的错误是突变(mutation)发生的原因。突变是生物进化和细胞分化的分子基础。所以遗传的稳定性和突变的绝对性组成生物界对立统一的自然现象,使生物世界五彩缤纷。
一、DNA突变和损伤的概念
突变是指DNA分子碱基的改变或表型功能的异常变化。是通过复制而遗传给子代的永久性DNA序列的改变,逃脱或躲过细胞修复系统。DNA损伤通常指DNA序列可修复的变化(主要是DNA复制中一条链上经修复系统改正的变化)。
突变有自发和诱发两种,其表现是:只有基因型改变而无表型改变(DNA多态性和个体差异的基础)、表型改变(遗传病和遗传倾向性的病的原因)和致死性突变。在复制过程中自然发生的突变几率极低,约为10-9,而外界因素引起的诱变研究不断深入,其形式有:错配(点突变)、缺失、插入和倒位。
点突变指DNA分子上一个碱基的改变;缺失指一个碱基或一段核苷酸序列从DNA分子上消失;插入指一个或一段原来没有的核苷酸序列插入到DNA分子中间;倒位指DNA链内较大片段的重组(反置或内迁)。
物理因素多见于紫外线照射,引起DNA分子结构中出现嘧啶二聚体。化学因素主要有烷化剂、亚硝酸盐和抗生素及类似物。前两者引起DNA分子中碱基改变,后者能嵌入DNA双螺旋的碱基对之间,干扰和影响DNA的复制与转录。
二、DNA损伤的修复
DNA损伤和修复,是细胞内DNA复制中同时并存的两个过程。修复(repairing)是针对已发生的DNA损伤施行补救,可看作很小范围内的DNA合成。主要有光修复、切除修复、重组修复和SOS修复等。
1.光修复
从单细胞生物到鸟类都有光复合酶,可见光使该酶激活,并催化分解因紫外线照射而产生的嘧啶二聚体,使DNA损伤得以
恢复。
2.切除修复
这是机体细胞内DNA损伤的主要修复方法。由特异的核酸内切酶、DNA-polI、DNA连接酶完成。其过程是:核酸内切酶水解核酸链内损伤部位的磷酸二酯键,造成一个缺口;DNA-polI在3′-OH端按碱基配对原则催化合成新的DNA片段,置换出的片段还由DNA-polI切除;DNA连接酶完成最后的修复。
着色性干皮病(xeroderma pigmentosis,XP)是一种人类遗传性皮肤病,DNA修复能力的缺陷可能是病因。患者对日光异常敏感,其皮肤受照射后,易诱发皮肤癌。
3.重组修复
当DNA分子损伤面较大,来不及修复就复制。其损伤部位失去模板作用,造成子链上的缺口,通过链间交换,可填补这缺口,而母链上的缺口由DNA-pol和DNA连接酶完成修复。原有的损伤部位还在,但随多次复制,损伤链所占比例减少。
4.SOS修复
当DNA损伤严重,细胞处在危急状态下的一种修复方式。这种修复反应特异性低,DNA保留的错误较多,会引起突变,但细胞尚可存活。
第四节 基因重组与DNA克隆
一、基因重组
DNA分子内或分子间发生遗传信息的重新组合,称为遗传重组或基因重组。重组产物称为重组DNA。DNA的重组广泛存在于各类生物。其功能:①在DNA损伤修复中起关键作用,没有重组,损伤和突变不会被消除。②重组和转座产生基因新的组合,供自然选择。③调节DNA表达。
20世纪60年代末,在细菌体内陆续发现一类能识别DNA的特异序列,且在识别序列内或附近切开DNA双链的核酸水解酶,称为限制性核酸内切酶(简称限制酶)。这类酶可将侵入宿主细胞的外源性DNA迅速切开,进而被脱氧核糖核酸酶水解,有防止病毒感染宿主细胞的作用。而对细菌自身的DNA则会通过甲基化酶在该种限制酶切位点的甲基化修饰而得到保护。所以,限制酶和甲基化酶共同构成细菌的限制-修饰系统。
限制酶是一类重要的工具酶,到1999年10月已得到3154种,主要根据其来源菌株,依属、种、株三字母命名,若从同一微生物发现的多种限制酶,则依发现和分离前后的顺序用罗马数字表示。根据限制酶识别切割特性和催化条件有I、Ⅱ、Ⅲ型,重组DNA中常用的是Ⅱ型。限制酶只有限制性内切作用而无修饰功能,识别序列一般有4~6个碱基对,多数能识别廻文结构DNA序(具有二次旋转对称性)。例如大肠杆菌DNA限制酶EcoRⅠ的切口是交错的,产生能彼此配对的粘端(sticky end),切口是齐头的,产生平端(blund end)。由同一个限制酶切断得到的任何两个DNA片段的粘性末端都可以互相配对,再通过DNA连接酶连接,创建重组DNA分子。
1972年,美国学者Berg等人首次在体外把SV40(一种猴病毒)的DNA和噬菌体DNA用限制性内切酶分别切割,又将两者接在一起,成功地构建了第一个体外重组的人工DNA分子。
1973年,Cohen等人首次将体外重组的DNA分子导入大肠杆菌中,成功地进行了无性繁殖,从而完成了DNA体外重组和
扩增的全过程。由此诞生基因工程这门新兴学科。
二、DNA克隆
克隆(clone)是指通过无性繁殖产生在基因型和表型上与亲代完全相同的子代群体。DNA克隆是指在体外对DNA分子按照既定目的分离、剪切和人工重组,然后将重组分子导入合适的宿主细胞,使其扩增的过程。
大部分外源DNA片段不能在细胞中自我复制,必须连到一个可以自主复制的载体(病毒或质粒DNA)上,然后转入宿主细胞复制。这样,外源DNA可以纯化形式重新获得大量拷贝。因在分子水平上操作,又称分子克隆。由于研究对象常是特异的基因片段,所以又称基因克隆。
基因载体(vector)是供插入目的基因并将其导入宿主细胞内复制或表达的运载工具。其基本条件是:能自主复制并能带动插入的目的基因一起复制;具有一个以上的单一限制性酶切位点,以便目的基因插入;具有合适筛选标记(如抗药性基因,酶基因等);载体分子量小,可插入较大的目的基因而不影响复制;在细胞内稳定性高,以便确保重组体稳定传代而不易丢失。
质粒(plasmid)是一种独立于染色体外,能进行自主复制的细胞质遗传因子。主要存在于微生物,细菌中含量最丰富。质粒控制多种不同的遗传性状,尤其与细菌的抗药性、致病性有关。
λ-噬菌体是一种大肠杆菌病毒,为线性双链DNA,它的两端各有12个碱基的互补粘性末端,称cos位点。当噬菌体侵入宿主细胞,两个粘性末端互补结合,形成环状分子。λ-DNA在体外可包装成病毒颗粒,并高效感染大肠杆菌。天然的质粒、噬菌体、病毒都需经人工改构才可为理想的载体。质粒、噬菌体常用于原核细胞为宿主的分子克隆,动物病毒常用于真核细胞为宿主的分子克隆。
三、聚合酶链式反应(PCR)
PCR是一种体外快速的特定DNA片段扩增技术。Mullis于1985年发明,其基本原理是根据DNA复制机制及DNA在体外随温度发生变性和复性的特点设计的。
一个PCR反应包括靶DNA(含目的DNA的样品)、引物(人工合成的与靶DNA的3′端序列互补杂交)、4种dNTP和热稳定的DNA聚合酶等。然后置高温950C(15~30秒)下使靶DNA变性解链,反应混合物被迅速冷却(单链DNA与引物结合的退火温度要认真计算,45~550C),再升高温度置70~750C左右,由TDNA聚合酶催化引物延伸合成子链。PCR的高温变性—低温退火—适温延伸三步反应反复循环,使靶DNA在两段引物限定范围内的序列以几何级数扩增。20个循环,起始DNA即扩增百万倍,30个循环后,扩增亿倍,全部所需时间不到1小时。PCR已广泛应用于生物学各个领域,如基因工程、DNA测序、筛选人类遗传疾病、病原微生物检测、法医学鉴定等。
概括起来,基因工程(genetic engineering)包括以下几个主要内容:
1.从复杂的生物体基因组中分离出目的基因片段。 2.在体外,将目的基因片段连接到能自我复制的并且具有选择标记的载体分子上,形成重组DNA分子。
3.将重组DNA分子转移到适当的宿主细胞(又称受体细胞),并与之一起增殖。
4.筛选出获得重组DNA的受体细胞克隆。
5.从筛选出的阳性克隆中提取扩增的目的基因片段,供研究。 6.将目的基因克隆到表达载体上,导入宿主细胞,使之实现功能表达。
第十章 RNA的生物合成(转录)
教学目标:
1.掌握转录的概念和转录体系的组成。
2.熟悉原核生物转录的基本过程。比较真核生物的转录与原核生物不同。
3.了解RNA转录后加工的方式(内含子、外显子、核酶的概念)。
4.了解RNA复制的概念。
导入:从生物化学意义上说,基因(gene)是为生物活性产物编码的DNA功能片段,这些产物是各种RNA和蛋白质。基因表达包括细胞的遗传信息从DNA到RNA,再由RNA到蛋白质。前者称为转录,后者称为翻译。
第一节 转录
一、转录的概念和特点
转录(transcription)是DNA指导下的RNA合成过程,即DNA模扳的碱基序转抄成RNA的碱基序列。转录和复制有许多相似之处:都是酶促的核苷酸聚合过程;都以DNA为模板;都需依赖DNA的聚合酶;都按模板链的碱基配对原则和5′→ 3′方向在核苷酸之间生成磷酸二酯键,且延伸新链。不同的是:
1.不对称转录
转录不像复制要保留细胞的全部遗传信息,而是在细胞不同的发育时序,按生存条件和生理需要,部分遗传信息(结构基因)的表达。所以转录对基因组庞大的DNA链有选择性,这种选择是不对称的(asymmetric)。即DNA分子中进行转录的某一活化基因区段称模板链(template strand),与其对应的互补链不转录,称编码链(coding strand)。对各种基因来说,模板链并非总在同一条单链上。
2.RNA聚合酶(又称DNA指导的RNA聚合酶,DDRP) 该酶广泛存在于原核生物和真核生物中,以4种NTP为底物,无需引物,直接在模板上合成RNA链。
原核生物中所有的RNA都由一种RNA聚合酶合成。大肠杆菌RNA- pol分子量为460kDa,由5个亚基组成,分别为α2、β、β'、ζ。α2ββ'称为核心酶,只能使已开始合成的RNA链延长,不具有起始合成RNA的能力,ζ因子有识别转录起始位点的作用。启动转录只有全酶与模板DNA启动子结合才发挥作用。
真核生物RNA- pol有多种,分子量大致都在500kDa左右。 DDRPⅠ分布在核仁,合成rRNA前体 DDRPⅡ分布在核质,合成mRNA,hnRNA DDRPⅢ分布在核质,合成tRNA,5SrRNA,snRNA 线粒体RNA聚合酶合成线粒体RNA 二、转录过程
转录是包括起始—延伸—终止的连续过程。原核生物的转录和真核生物的转录在起始和终止上有较多的不同。
(一)启动子和起始
启动子(promoter)是指RNA聚合酶识别、结合并开始转录的一段DNA序列。
原核启动子发现有两个重要序列,一个位于转录起始位点上游10个核苷酸处(习惯上被转录为RNA的DNA模板上的第一个核苷酸指定为+1,即转录起始位点),另一个位于上游35个核苷酸处,它们分别称为-10序列和–35序列。-10序列富含TATAAT,称之TATA box或Pribnow box。该序列富含AT,维持双链结合的氢键相对较弱,易发生解链,是RNA聚合酶的核心酶结合部位。-35序列富含TTGACA,是RNA聚合酶ζ亚基的识别部位。实验可知原核生物RNA聚合酶作用的区域为-50~+20。
在转录起始阶段,RNA聚合酶识别将拷贝的基因的上游DNA(即启动子),局部解开双链(特别是TATA box处,约17个bp),当酶移至转录起始位点(+1处),催化按模板链碱基序依次排列的头两个三磷酸核苷聚合,生成RNA链的第一个3′,5′-磷酸二酯键,第一个核苷酸一定是三磷酸嘌呤核苷酸,而且pppG较pppA又占绝对优势,5′-端的pppG这一末端结构一旦生成,一直保持到转录完成。
(二)延伸
转录起始后,RNA聚合酶、DNA模板以及第一个聚合生成的四磷酸二核苷酸(即5′pppGpN-OH3′)三者形成一个复合体,此时ζ亚基脱落(与另一核心酶结合而重复使用),核心酶沿DNA链的3′→5′方向移动(转录方向),而RNA链按5′→3′方向延伸。由RNA聚合酶、DNA模板和新生RNA组成的区域叫做“转录泡”(transcription bubble)。新生RNA与DNA模板链暂时形成短的杂交双链(长度约为12bp),这有利于正确阅读模板链的碱基序,但A=U配对稳定性最低。在延伸阶段约有DNA的20个bp被解开,延伸速率约每秒50个核苷酸,在此时间内转录泡移动17.0nm。当RNA从DNA上脱离,暂时局部解开的双链及时复合。
研究发现,在同一DNA模板上,有许多RNA聚合酶同时结合其上,同步催化转录作用,从转录起始点到终止点有一系列长短不一的新生RNA链,它们逐渐加长和不断延伸,还被排斥于DNA模板之外。
(三)终止子和终止
终止子(terminator)是指所转录的RNA行将结束时,模板DNA分子上出现的有终止信号的序列,它可被RNA聚合酶本身或其辅助因子所识别。
E.coli有两类终止子:①不依赖ρ因子的,称简单终止子。该终止子有一特殊序列与终止有关,称回文序列(它是两段由多个GC碱基对组成的反向重复序列),随后相连AT序列,因为回文DNA上合成的RNA是自身互补的,可以形成发夹结构,该结构可使RNA聚合酶减慢移动或暂停RNA合成,导致转录终止;此外,模板DNA5′-末端的AT区中含有一连串A,故在转录出的RNA链的3′-终止端为一连串的U (polyU约有6个),它提供信号使RNA聚合酶脱离模板,RNA链从DNA链上解离(U-A结合最弱)。②依赖ρ因子的终止子,其回文结构不富含G-C序。