好文档 - 专业文书写作范文服务资料分享网站

2012数学建模美赛论文 - 图文 

天下 分享 时间: 加入收藏 我要投稿 点赞

Team # 14820 Page 4 of 17

nights.

Now we can list 13 different drift mode of camping locations. Shown in Table 1. Table 1

The Camping Locations of 13 Different Drift Mode

Travel types Camping sites

6 nights 4,8,13,17,21,25

7 nights 4,7,11,1418,21,25

8 nights 3,6,9,13,16,19,22,25

9 nights 3,6,8,11,14,17,19,22,25 10 nights 3,5,8,10,13,15,18,20,23,25 11 nights 2,5,7,9,11,14,16,18,20,23,25 12 nights 2,4,6,8,10,13,15,17,19,21,23,25 13 nights 2,4,6,8,10,12,13,15,17,19,21,23,25 14 nights 2,4,5,7,9,11,13,14,16,18,20,21,23,25 15 nights 2,3,5,7,8,10,12,13,15,17,18,20,22,23,25 16 nights 2,3,5,6,8,9,11,13,14,16,17,19,20,22,23,25 17 nights 1,3,4,6,7,9,10,12,13,15,16,18,19,21,22,24,25 18 nights 1,3,4,6,7,8,10,11,13,14,15,17,18,19,21,22,24,25 Then we need to calculate the schedule of optimal mix of trips, of varying

duration on the basis of no two sets of campers can occupy the same site at the same time .

For this purpose we establish the model of Computational-Intelligence-System (CIS ).The value of simulation methods as a tool for understanding and managing natural resources is evident.

we set cycle of the schedule 29 days in order to facilitate management to manage and make the river set aside a certain purification time. There are Y camp sites on the Big Long River, distributed fairly uniformly throughout the river corridor. we arrange camp sites in turn :1, 2, 3,4……..Y.

Stept1:

According to the basic principle of the same daily driving distance for each trip in the course of travel we arrange camping trips per night to stay at the nearest site,we build 18×13 matrix, the rows represent the number of travel nights ,and the columns represent the order of nights.The number in the matrix is the number of camping sites.(Shown in Table 2) We define this 18×13 matrix G.

Stept2:

Traverse the first row of the G matrix,If a1i?a1j?a1k……(i

Team # 14820 Page 5 of 17

?G(1)0? Deform the G(1) matrix we will get a matrix??M(3),(0 means a one ?G??0–dimensional matrix) .Traverse the second row of the M(3) matrix,If a2i?a2j?a2k……(i

0??G(2) Deform the G (2) matrix we will get a matrix ??M(4),(0 means a ?G(1)??0one–dimensional matrix) .Traverse the third row of the M(3) matrix,Ifa3i?a3j?a3k……(i

.......

Stept n:

0??G(n?2) Deform the G (n-2) matrix we will get a matrix ???M(n),(0 0G(n?3)??means a one –dimensional matrix) .Traverse the (n-1)th row of the M(n-1) matrix,If a(n?1)i?a(n?1)j?a(n?1)k……(i

Team # 14820 Page 6 of 17

If the number of rows of the G(n-1) matrix is beyond 29, stop running the program the result is the schedule for the trips to travel.The specific program is shown as Figure 1.

analyze data build 18×13 matrix G Traverse the first row of the G matrix, Remove columns so that elements in the first row of G are diffident from each other ,get G(1) matrix Deform the G(1) matrix, get a matrix =M(3) Traverse the second row of the M(3) matrix, Remove columns so that elements in the second row of M(3) are diffident from each other ,get G(2) matrix Put out The Deform the G(n-2) matrix, get a matrix Specific Distribute of the Camping sites 0??G(n?2)?0G(n?3)???=M(n) No n+17≥29 Yes Stop

Figure 1 .The flow chart of the program

Team # 14820 Page 7 of 17

4.2.3 The result of issue 2

The managers of the Big Long River can modify launch schedules to influence the patterns of rafting traffic on the River, and thus to optimize the flow patterns on the river.

Application of CIS model:

when Y = 25,we can get higher utilizations of the camping sites.The specific results are shown in Table 3.

And the table 6 and table 7 in the appendix are the results of Y=18 and Y=32.

Table 3

The Specific Distribute of the Camping sites

From Table 3 we can get some informations,they are as follows:

? The number of 6,10,11,18 nights travel are more than 7,8,9,12,13,14 nights travel,besides,there are no travel trips of 15,16,17 nights.

? There are 318 trips go to enjoy the drifting every year,it's 6 months in fact.This is broadly in line with the actual situation.

Team # 14820 Page 8 of 17

? The optimal schedule is shown as Table 4.-1 and 4-2.

The table 4-1 is a schedule from April to June.

Table 4-1

The Optimal Schedule Trip Length 6 nights 7 nights 8 nights 9 nights 10 nights APRIL 4.1-4.6 4.2-4.7 4.3-4.8 4.4-4.9 4.5-4.10 4.9-4.14 4.14-4.15 4.24-4.29 4.1-4.7 4.23-4.29 4.10-4.16 4.11-4.17 4.1-4.8 4.10-4.17 4.12-4.19 4.22-4.29 4.13-4.21 4.16-4.24 4.19-4.27 4.21-4.29 4.1-4.10 4.2-4.11 4.3-4.12 4.4-4.13 4.20-4.29 4.14-4.23 4.11-4.20 4.15-4.24 4.19-4.29 4.17-4.27 4.1-4.11 4.2-4.12 4.3-4.13 4.4-4.14 4.5-4.15 4.6-4.16 4.7-4.17 4.17-4.27 4.19-4.29 4.15-4.26 4.16-4.28 4.14-4.26 4.12-4.25 4.13-4.26 4.1-4.18 4.2-4.19 4.3-4.20 4.4-4.21 4.5-4.22 4.6-4.23 4.7-4.24 MAY 5.1-5.6 5.2-5.7 5.3-5.8 5.4-5.9 5.5-5.10 5.9-5.14 5.14-5.15 5.24-5.29 5.1-5.7 5.23-5.29 5.10-5.16 5.11-5.17 5.1-5.8 5.10-5.17 5.12-5.19 5.22-5.29 5.13-5.21 5.16-5.24 5.19-5.27 5.21-5.29 5.1-5.10 5.2-5.11 5.3-5.12 5.4-5.13 5.20-5.29 5.14-5.23 5.11-5.20 5.15-5.24 5.19-5.29 5.17-5.27 5.1-5.11 5.2-5.12 5.3-5.13 5.4-4.14 5.5-5.15 5.6-5.16 5.7-5.17 5.17-5.27 5.19-5.29 5.15-5.26 5.16-5.28 5.14-5.26 5.12-5.25 5.13-5.26 5.1-5.18 5.2-5.19 5.3-5.20 5.4-5.21 5.5-5.22 5.6-5.23 5.7-5.24 JUNE 6.1-6.6 6.2-6.7 6.3-6.8 6.4-6.9 6.5-6.10 6.9-6.14 6.14-6.15 6.24-6.29 6.1-6.7 6.23-6.29 6.10-6.16 6.11-6.17 6.1-6.8 6.10-6.17 6.12-6.19 6.22-6.29 6.13-6.21 6.16-6.24 6.19-6.27 6.21-6.29 6.1-6.10 6.2-6.11 6.3-6.12 6.4-6.13 6.20-6.29 6.14-6.23 6.11-6.20 6.15-6.24 6.19-6.29 6.17-6.27 6.1-6.11 6.2-6.12 6.3-6.13 6.4-6.14 6.5-6.15 6.6-6.16 6.7-6.17 6.17-6.27 6.19-6.29 6.15-6.26 6.16-6.28 6.14-6.26 6.12-6.25 6.13-6.26 6.1-6.18 6.2-6.19 6.3-6.20 6.4-6.21 6.5-6.22 6.6-6.23 6.7-6.24 11 nights 12 nights 13 nights 14 nights 18 nights

2012数学建模美赛论文 - 图文 

Team#14820Page4of17nights.Nowwecanlist13differentdriftmodeofcampinglocations.ShowninTable1.Table
推荐度:
点击下载文档文档为doc格式
7q57i4ynxz3z01x0bcil
领取福利

微信扫码领取福利

微信扫码分享