2020-2021南京市高中必修五数学上期中第一次模拟试卷含答案
一、选择题
n21.数列?an?的前n项和为Sn?n?n?1,bn???1?an?n?N*?,则数列?bn?的前50项
和为( ) A.49
B.50
C.99
D.100
2.如果?A1B1C1的三个内角的余弦值分别等于?A2B2C2的三个内角的正弦值,则 A.?A1B1C1和?A2B2C2都是锐角三角形 B.?A1B1C1和?A2B2C2都是钝角三角形
C.?A1B1C1是钝角三角形,?A2B2C2是锐角三角形 D.?A1B1C1是锐角三角形,?A2B2C2是钝角三角形
?x?y?11?0?3.设x,y满足不等式组?7x?y?5?0,若Z?ax?y的最大值为2a?9,最小值为
?3x?y?1?0?a?2,则实数a的取值范围是( ).
A.(??,?7]
B.[?3,1]
C.[1,??)
D.[?7,?3]
224.已知关于x的不等式x?4ax?3a?0?a?0?的解集为?x1,x2?,则x1?x2?a的x1x2最大值是( ) A.
6 3B.
23 3C.
43 3D.?
43 3
?5x?2y?18?0?5.已知实数x,y满足?2x?y?0,若直线kx?y?1?0经过该可行域,则实数k
?x?y?3?0?的最大值是( ) A.1
B.
3 2C.2 D.3
6.下列函数中,y的最小值为4的是( )
4A.y?x?
xC.y?ex?4e?x
B.y?2(x2?3)x?22
D.y?sinx?4(0?x??) sinx?x?3y?3,?7.设x,y满足约束条件?x?y?1,则z=x+y的最大值为( )
?y?0,?A.0
B.1
C.2
D.3
8.?3?a??a?6???6?a?3?的最大值为( )
B.
A.9
9 2C.3 D.
32 29.在?ABC中,a,b,c分别是角A,B,C的对边,若bsinA?3acosB?0,且b2?ac,则
a?c的值为( ) bB.2
C.
A.2
2 2D.4
10.等比数列?an?中,a1?A.±4
1,q?2,则a4与a8的等比中项是( ) 811B.4 C.? D.
44?3x?y?6?x?y?2?0?11.x,y满足约束条件?,若目标函数z?ax?by(a?0,b?0)的最大值为
x?0???y?012,则A.
23?的最小值为 ( ) abB.25
C.
25 325 6D.5
的看台的某一列的正前和
,第一排和最后
12.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为
一排的距离为56米(如图所示),旗杆底部与第一排在同一个水平面上.若国歌长度约为
秒,要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为()(米 /秒)
A.
1 10B.
3 10C.
1 2D.
7 10二、填空题
,13.已知数列1111,,L,,L,则其前n项的和等于______. 1?21?2?31?2?3?L?n14.若a>0,b>0,a+b=2,则下列不等式对一切满足条件的a,b恒成立的是 (写出所有正确命题的编号).①ab≤1; ②a+b≤2; ③a2+b2≥2;④a3+b3≥3;⑤11??2. ab15.已知数列?an?满足a1?1,an?1?3an?2,则数列?an?的通项公式为________. 16.对一切实数x,不等式x2?a|x|?1?0恒成立,则实数a的取值范围是_______ 17.已知等比数列?an?的首项为a1,前n项和为Sn,若数列?Sn?2a1?为等比数列,则
a3?____. a218.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞,若要测量如图所示的蓝洞的口径A,B两点间的距离,现在珊瑚群岛上取两点C,D,测得CD?80,?ADB?135?,
?BDC??DCA?15?,?ACB?120?,则A,B两点的距离为________.
19.设x>0,y>0,x?y?4,则
14?的最小值为______. xy20.在锐角ΔABC中,内角A,B,C的对边分别为a,b,c,已知
a?2b?4,asinA?4bsinB?6asinBsinC,则nABC的面积取最小值时有c2?__________.
三、解答题
21.已知数列?an?是等差数列,an?1?an,a1?a10?160,a3?a8?37. (1)求数列?an?的通项公式;
(2)若从数列?an?中依次取出第2项,第4项,第8项,L,第2n项,按原来的顺序组成一个新数列,求Sn?b1?b2?L?bn. 22.设函数f(x)?|x?1?x?a(a0) a(1)证明:f(x)?2;
(2)若f(3)?5,求a的取值范围.
23.已知数列{an}满足:an?1?2an?n?1,a1?3.
(1)设数列{bn}满足:bn?an?n,求证:数列{bn}是等比数列; (2)求出数列{an}的通项公式和前n项和Sn.
24.已知?an?是递增的等差数列,a2,a4是方程(1)求?an?的通项公式; (2)求数列?的根.
?an?nn?的前项和. 2??25.VABC中,内角A,B,C的对边分别为a,b,c.已知acosC?ccosA?a. (1)求证:A?B; (2)若A??6,VABC的面积为3,求VABC的周长.
26.在△ABC中,角A,B,C所对的边分别是a,b,c,且cosA?(1)求sin24. 5B?C?cos2A的值; 2(2)若b?2,?ABC的面积S?3,求a的值.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.A 解析:A 【解析】
试题分析:当n?1时,a1?S1?3;当n?2时,
2an?Sn?Sn?1?n2?n?1???n?1???n?1??1??2n,把n?1代入上式可得
?????3,n?13,n?1a1?2?3.综上可得an?{.所以bn?{?2n,n为奇数且n?1.数列?bn?的前50项
2n,n?22n,n为偶数和为
S50??3?2?3?5?7?L?49??2?2?4?6?L?50???3?2?24?3?49?2?2?25?2?50?2?49.故A正确.
考点:1求数列的通项公式;2数列求和问题.
2.D
解析:D 【解析】 【分析】
【详解】
?A1B1C1的三个内角的余弦值均大于0,则?A1B1C1是锐角三角形,若?A2B2C2是锐角三角
A2?形,由
,得{B2??2?A1?B1,那么,A2?B2?C2??C1?2?2,矛
C2?盾,所以?A2B2C2是钝角三角形,故选D.
?23.B
解析:B 【解析】 【分析】
作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值. 【详解】
?x?y?11?0?作出不等式组?7x?y?5?0对应的平面区域(如图阴影部分),
?3x?y?1?0?目标函数z?ax?y的几何意义表示直线的纵截距,即y??ax?z,
(1)当a?0时,直线z?ax?y的斜率为正,要使得z的最大值、最小值分别在C,A处取得,
则直线z?ax?y的斜率不大于直线3x?y?1?0的斜率, 即?a?3,
??3?a?0.
(2)当a?0时,直线z?ax?y的斜率为负,易知最小值在A处取得,