20. 如图
则AB?VABC中,D是AB的一个三等分点,DE//BC,EF//BC,AF?2,
__________ 21. 如图,在
VABC中,AD是BC边上中线,AE是BC边上的高,?DAB??DBA,
AAB?18,BE?12,则CE?__________.
ABDCB (第21题图) (第22题图)
22. 如图,AD是
EDCE VABC的高,AE是VABC外接圆的直径,圆半径为5,AD?4,则
ABgAC?__________
参考答案
一、选择题
1. C 由三角形面积公式:
111?6a??4b??3c,?6a?4b?3c,设3c?k,则222kkkkkka?,b?,c?,?a:b:c?::?2:3:4.
6436432. C 依题意SVADE:SVABC?1:2,?DE:BC?1:2 3. A Q?ACF??BCF,?ACF??ABF,??BCF??ABF又Q?BFE??CFB,?VFBE∽VFCB,得FB:FC?FE:FB, FB:FC?FE:FB,?FC?4,从而CE?3.
4. C 设?1??CAD,?2??BAE,由AD?DC得?1??C,而?1??DAB??2??DAB?90o??1??2,故?2??C,又?E??E,
?VBAE∽VACE
5. C 由射影定理知A、B正确,因为CD?AB,所以径,又AC?BC,故BC是圆O的切线. 6. D EF是
VACD外接圆O中,AC是直
AR(常数). VAPR的中位线,?EF?12ll1?360o,??,母线与轴的夹角为30°,而
r2ro7. D 圆锥侧面展开图中心角180o?平面?与圆锥的轴成45°,45°>30°,所以截线是椭圆. 8. B QPD, QAB是半圆O的直径,??ADB?90,VPCD ∽VPAB?CD?ABPBPD. PB?cos??二、填空题 9. ?
10. 6 提示:由E、O、F向直线MN引垂线,垂足分别为E?、O?、F?,则有
EE??FF??2OO??252?42?6
11. 36° EDBO四点共圆,??EOB?180o?108o?72o,QOC?OB,
1??C??EOB?36o.
22212. 2 由切割线定理知PC?PAgPB?PD,?PC?PD
13. 45° 连接BD,BD与EC相交于点F,设?1??CED,?2??DFE Q?1??A??ACE,?2??CDB??ECD,?CDB??A,
?ECD??ACE,??1??2,而?ADB?90o.
?的中点,14. 14 连接AE,又E是BD??BAE??EAC,QAB是直径,?AE?BE,
从而E是BC中点,?BE?EC?6,AB?AC?18,由CDgCA?CEgCB得
(18?AD)?18?6?12,故AD?14.
15. 2 QEF//AD//BC,?EM?1,NF?1,MN?EF?(EM?NF)
11?(AD?BC)?(EM?NF)?(2?6)?2?2.
2216. (1) 共圆 (2)∽ (3)6.
QAD?BC,CE?AB?D、E都在以AC为直径的圆上,即A、E、D、C 四点共
圆,??BED??ACB,又?DBE??ABC,?BDE∽
DEBD3,?DE??cosB?(B为锐角)ACAB5VVBAC,
?3AC?6. 517. 43 连接AC,在QPC2?PAgPB,?PA?2,?ACP??B?30o,
由正弦定理得
VPAC中,
24oo,,从而,,?PAC?90?P?60?sin?PAC?1?osin30sin?PAC?PCB?90o,?BC?PB2?PC2?43.
18.
3 在2ADAB21,即VABD中,由正弦定理得sin???sin?ABDsin30ABDsin?ADBo,
?sin?ABD?2?12???CAD?45o,?ACD?105o,,从而?ABD?45o,22ooo从而
?BAC?105?45?60
sin?BACSVABC2ABgACg?SVACD1ACgADgsin?CAD21?sin60?2sin45oo322?22?3 219.
PMPA332oo??,又 连接NQ、MA,Q?PNQ?90,?PMA?90,?2PNPQ4PN?8,?PM?6,而PM2?POgPQ,?36?2Rg4R,?OA?R?32 2AB?9AD20.
2ADEF//DC??AFDE//BC?AC?ABAD?AD2?ABgAF,设BD?x,则?AE????AC?ADAFAE??39AD?2x,AB?3x,而AF?2?4x2?6x?x?,AB?.
2221. 15 Q?DAB??DBA,?AD?BD,又AD是中线,?BD?DC,易知
?BAC?90o,QAE?BC,由射影定理得AB2?BEgBC,?BC?27,
?CE?27?12?15.
22. 40 连接
BE,QVABE?ABgAC?ADgAE?4?10?40.
∽
VADC,?ABAD?AEAC,
证明题练习
1. 如图,AB为eO的直径,直线CD与eO相切于E, AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,连接AE,BE. 证明: (?)?FEB??CEB;(??)EF2?AD?BC.