好文档 - 专业文书写作范文服务资料分享网站

【典型题】高中必修五数学上期中第一次模拟试卷(及答案)

天下 分享 时间: 加入收藏 我要投稿 点赞

【典型题】高中必修五数学上期中第一次模拟试卷(及答案)

一、选择题

1.朱载堉(1536~1611),是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中制成了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”.即一个八度13个音,相邻两个音之间的频率之比相等,且最后一个音是最初那个音的频率的2倍.设第三个音的频率为f1,第七个音的频率为f2,则A.4122 B.1116 C.82 f2= f1D.32

?n2(n为奇数时)2.已知函数f(n)??2,若an?f(n)?f(n?1),则

?n(n为偶数时)?a1?a2?a3?L?a100?

A.0 C.?100

B.100 D.10200

?x?y?11?0?3.设x,y满足不等式组?7x?y?5?0,若Z?ax?y的最大值为2a?9,最小值为

?3x?y?1?0?a?2,则实数a的取值范围是( ).

A.(??,?7] A.若 a>b,则a2>b2 C.若a>b,则a3>b3

B.[?3,1]

C.[1,??)

D.[?7,?3]

4.下列命题正确的是

B.若a>b,则 ac>bc D.若a>b,则

11< ab5.已知A、B两地的距离为10 km,B、C两地的距离为20 km,现测得∠ABC=120°,则A、C两地的距离为 ( ) A.10 km

B.3 km

C.105 km

D.107 km

6.已知等比数列{an}中,a3a11?4a7,数列{bn}是等差数列,且b7?a7,则b5?b9?( ) A.2 7.设函数

B.4

是定义在

,已知

C.16

上的单调函数,且对于任意正数

,若一个各项均为正数的数列,其中

18项A.

( )

B.9

C.18

D.36

是数列

D.8 有

满足

中第

的前项和,则数列

1,q?2,则a4与a8的等比中项是( ) 811A.±4 B.4 C.? D.

4414yx?x?y?19.已知正数、满足,则的最小值为( )

x1?y8.等比数列?an?中,a1?A.2

B.

9 2C.

14 3D.5

10.已知?an?是等比数列,a2?2,a5?A.161?41,则a1a2?a2a3?????anan?1?( ) 4C.

??n?

B.161?2??n?

321?2?n? ?3D.

321?4?n? ?311.在?ABC中,内角A,B,C所对的边分别为a,b,c,若bsin2A?3asinB?0,

b?3c,则

A.1

c的值为( ) aB.3 3C.5 5D.7 712.若正数x,y满足x?4y?xy?0,则A.

3的最大值为 x?yC.

1 33B.

83 7D.1

二、填空题

13.已知数列?an?、?bn?均为等差数列,且前n项和分别为Sn和Tn,若

Sn3n?2?,Tnn?1a4?_____. 则b414.已知命题p:?x0?R,ax0?x0?________.

21?0,若命题p是假命题,则实数a的取值范围是2?x?y?2?15.若变量x,y满足?2x?3y?9,则z=2x+y的最大值是_____.

?x?0?16.已知数列?an?满足a1?1,an?1??n1,n?N*,则a2019?__________. 1?an17.数列{an}满足an?1?(?1)an?2n?1,则{an}的前60项和为_____.

?3?x?,??18.(理)设函数f(x)?x?1,对任意?,?2??2xf()?4m2f(x)?f(x?1)?4f(m)恒成立,则实数m的取值范围是______. m__________. 19.在中,若,则

?y?x?20.设变量x,y满足约束条件:?x?y?2,则z?x?3y的最小值为__________.

?x??1?三、解答题

21.若Sn是公差不为0的等差数列?an?的前n项和,且S1,S2,S4成等比数列,S2?4. (1)求数列?an?的通项公式;

3,Tn是数列?bn?的前n项和,求使得Tn?m对所有n?N?都成立的anan?120最小正整数m.

(2)设bn?22.设数列(1)求数列(2)设

的前项和为

,且

.

的通项公式; ,求数列

的前项和

.

23.设等差数列?an?满足a3?5,a10??9 (Ⅰ)求?an?的通项公式;

(Ⅱ)求?an?的前n项和Sn及使得Sn最大的序号n的值 24.设等差数列?an?的前n项和为Sn,a2?S2??5,S5??15. (1)求数列?an?的通项公式; (2)求

111????. a1a2a2a3anan?125.数列?an?对任意n?N*,满足an?1?an?1,a3?2. (1)求数列?an?通项公式;

?1?(2)若bn????n,求?bn?的通项公式及前n项和.

?3?26.等差数列?an?中,a2?4,a4?a7?15. (1)求数列?an?的通项公式; (2)设bn?2an?2an?n,求b1?b2?b3?????b10的值.

【参考答案】***试卷处理标记,请不要删除

一、选择题 1.D 解析:D 【解析】 【分析】

:先设第一个音的频率为a,设相邻两个音之间的频率之比为q,得出通项公式, 根据最后一个音是最初那个音的频率的2倍,得出公比,最后计算第三个音的频率与第七个音的频率的比值。 【详解】

n?1:设第一个音的频率为a,设相邻两个音之间的频率之比为q,那么an?aq,根据最

后一个音是最初那个音的频率的2倍,a?2a?aq?q?2,所以

1312112f2a7??q4?32,故选D f1a3【点睛】

:本题考查了等比数列的基本应用,从题目中后一项与前一项之比为一个常数,抽象出等比数列。

2.B

解析:B 【解析】

试题分析:由题意可得,当n为奇数时,an?f(n)?f(n?1)?n2??n?1???2n?1;当

2n为偶数时,an?f(n)?f(n?1)??n2??n?1?2?2n?1;所以

a1?a2?a3?L?a100??a1?a3?L?a99???a2?a4?L?a100???2?1?3?5?L?99??99?2?2?4?6?L?100??99?100,

故选B.

考点:数列的递推公式与数列求和.

【方法点晴】本题主要考查了数列的递推公式与数列求和问题,考查了考生的数据处理与

n2(当n为奇数时)运算能力,属于中档题.本题解答的关键是根据给出的函数f?n??{2及

?n(当n为偶数时)an?f(n)?f(n?1)分别写出n为奇数和偶数时数列?an?的通项公式,然后再通过分

组求和的方法得到数列?an?前100项的和.

3.B

解析:B 【解析】 【分析】

作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值. 【详解】

?x?y?11?0?作出不等式组?7x?y?5?0对应的平面区域(如图阴影部分),

?3x?y?1?0?目标函数z?ax?y的几何意义表示直线的纵截距,即y??ax?z,

(1)当a?0时,直线z?ax?y的斜率为正,要使得z的最大值、最小值分别在C,A处取得,

则直线z?ax?y的斜率不大于直线3x?y?1?0的斜率, 即?a?3,

??3?a?0.

(2)当a?0时,直线z?ax?y的斜率为负,易知最小值在A处取得,

要使得z的最大值在C处取得,则直线z?ax?y的斜率不小于直线x?y?11?0的斜率

?a??1, ?0?a?1.

(3)当a?0时,显然满足题意. 综上:?3?a?1.

故选:B. 【点睛】

本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,确定目标函数的斜率关系是解决本题的关键.

4.C

解析:C 【解析】

对于A,若a?1,b??1,则A不成立;对于B,若c=0,则B不成立;对于C,若

【典型题】高中必修五数学上期中第一次模拟试卷(及答案)

【典型题】高中必修五数学上期中第一次模拟试卷(及答案)一、选择题1.朱载堉(1536~1611),是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中制成了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”.即一个八度13个音,相邻两
推荐度:
点击下载文档文档为doc格式
7pijy2uxiu0n19a8hrgx9da6a52gca00h1n
领取福利

微信扫码领取福利

微信扫码分享