?2?532?5?8545.求矩阵A???1?742??4?112?2?532?5?854解: A???1?742??4?1121?3??的秩。 0??3??1?742?5?854??2?532??4?1120??2???1????5??3???1????2?3?4???1????4???????? 1??3?0?1?? 0??0?1?3??1?,?3????????0??3?420??2???3????3??1?7?027?15?63??4???3????3???2?,?3????????→??09?5?21???027?15?63??∴r(A)?2。 6.求下列矩阵的逆矩阵:
2?1?74?09?5?2??0000?00?00?1?32???
1(1)A??30???1?1??1??1?32100??2???1??3??3???1????1???????1010解:?AI???30???1?1001??1?100??3???2??4?1?32?0?11????2????1????112????04?3?101??100??1?32?0?97????2???3??2??? 310????04?3?101??00??1???3????2??1?321?01?1?1?1?2????2???3??1???
???1349??00??100113??010237? ????001349??A?1?113??
??237????349???1?30?5?8?18??0102????1???2??3???37???49??0013???13?6?3???(2)A =?4?2?1. ???11??2? ∴
01?30???13?6?3100???10???1???2????3???解:?AI???4?2?1010??????4?2?1010→ ??????11001?11001??2??2? 11
0?130??10?2?,?3????????0?2?1?4130?????????12?61??01??2???1????4??3???1??2?1????1?0?130??10?01?→
12?61????0?2?1?4130??0??100?130??100?133???2??22???3????1????????0112?61????????0102?7?1?
??????12?12??0010??0010???130?∴A-1 =??2?7?1? ?0??12??7.设矩阵A?22??1??35??,B??1???23??,求解矩阵方程XA?B. 解:?AI????1210??3501?????2????1?????3????1210??1???2??2?2????1??1?0?1?31?????????0 ∴
A?1????52?1 ?3???∴
X?BA?1???12?????52???23??3?1? ?=
?10???11?? 四、证明题
1.试证:若B1,B2都与A可交换,则B1?B2,B1B2也与A可交换。 证:∵B1A?AB1, B2A?AB2
∴?B1?B2?A?B1A?B2A?AB1?AB2?A?B1?B2? 即 B1?B2也与A可交换。
?B1B2?A?B1?B2A??B1?AB2???B1A?B2?A?B1B2? 即 B1B2也与A可交换.
2.试证:对于任意方阵A,A?AT,AAT,ATA是对称矩阵。
证:∵?A?AT?T?AT??AT?T?AT?A?A?AT
∴A?AT是对称矩阵。 ∵(AAT)T=?AT?T?AT?AAT
12
0?52?13?1?? ∴AAT是对称矩阵。 ∵ATA??T?AT?AT??T?ATA
∴ATA是对称矩阵.
3.设A,B均为n阶对称矩阵,则AB对称的充分必要条件是:AB?BA。 证: 必要性:
∵AT?A , BT?B 若AB是对称矩阵,即?AB??AB
T而?AB??BA?BA 因此AB?BA
TT充分性:
TT若AB?BA,则?AB??BA?BA?AB
T∴AB是对称矩阵.
4.设A为n阶对称矩阵,B为n阶可逆矩阵,且B 证:∵A?A BT?1?1?BT,证明B?1AB是对称矩阵。
?BT
?1T?B
?1AB?1???AB???B?TT?BT?AT?BT??T?B?1AB
∴BAB是对称矩阵. 证毕.
《经济数学基础》形成性考核册(四)
(一)填空题 1.函数f(x)?4?x?21_________。答案:(1,2)??2,4?. 的定义域为__________ln(x?1)2. 函数y?3(x?1)的驻点是________,极值点是 ,它是极 值点。答案:x=1;(1,0);小。 3.设某商品的需求函数为q(p)?10e1D??1?11111?____________?1A???0??01?p2,则需求弹性Ep? .答案:Ep=?p 24.行列式.答案:4.
?116?,则t__________时,方程组有唯一解. 答案:t?132??0t?10??13
5. 设线性方程组AX?b,且
1??1.
(二)单项选择题
1. 下列函数在指定区间(??,??)上单调增加的是( B ).
A.sinx B.e x C.x 2 D.3 – x 2. 设f(x)?1,则f(f(x))?( C ). x112A. B.2 C.x D.x
xxx?x1e?e11ex?e?xdx?0 B.?dx?0 C.?xsinxdx?0 D.?(x2?x3)dx?0 A.??1?1-1-12213. 下列积分计算正确的是( A ).
4. 设线性方程组Am?nX?b有无穷多解的充分必要条件是( D ).
A.r(A)?r(A)?m B.r(A)?n C.m?n D.r(A)?r(A)?n
?x1?x2?a1?5. 设线性方程组?x2?x3?a2,则方程组有解的充分必要条件是( C ).
?x?2x?x?a233?1A.a1?a2?a3?0 B.a1?a2?a3?0 C.a1?a2?a3?0 D.?a1?a2?a3?0
三、解答题
1.求解下列可分离变量的微分方程: (1) y??e解:
x?y
dy?ex?ey , e?ydy?exdx ?e?ydy??exdx , ?e?y?ex?c dxdyxex(2)?2
dx3y解: 3ydy?xedx
2x?3y2dy??xdex y3?xex??exdx y3?xex?ex?c
2. 求解下列一阶线性微分方程: (1)y??解:y?e2y?(x?1)3 x?1?2??3?x?1dx???x?1?e??e2ln?x?1?dx?c?????2?????dx?x?1?????x?1?e3?2ln?x?1?dx?c??x?1??2???x?1?dx?c?
??x?1??2?1?x?1?2?c?? ?2? 14
(2)y??解:y?ey?2xsin2x x??1??????dx??2xsin2x?e?x?dx?c??elnx??????1?????dx?x???2xsin2x?e?lnxdx?c
?1???x??2xsin2x?dx?c??x?sin2xd2x?c ?x??cos2x?c?
x??3.求解下列微分方程的初值问题: (1)y??e2x?y??,y(0)?0
dye2x?解: dxey
y2xedy?e??dx y e?12xe?c 2 用x?0,y?0代入上式得:
101e?c, 解得c? 2212x1y ∴特解为:e?e?
22 e?0 (2)xy??y?e?0,y(1)?0 解:y??x11y?ex xx?11xdx?e?xdx??x?dx?c? y?e??x?e?
?? ?e?lnx?1xlnx????e?edx?c? ?x?xx ?1x??edx?c??1?ex?c
? 用x?1,y?0代入上式得: 0?e?c 解得:c??e ∴特解为:y?1xe?c x??(注意:因为符号输入方面的原因,在题4—题7的矩阵初等行变换中,书写时应把(1)写成①;(2)写成②;(3)写成③;…)
15