好文档 - 专业文书写作范文服务资料分享网站

石墨烯材料的介绍 

天下 分享 时间: 加入收藏 我要投稿 点赞

不一样,但它们是同质异位素,这样离子源内表面的沉积也会对测定结果带来影响。记忆效应的强弱与所采用的样品化合物的形式有关,如进行锂同位素测定时,采用不同锂化合物凃样,定量测定的记忆的锂量相差很大,其中以LiF的记忆效应最强。

6制备方法 编辑

石墨烯的研究热潮也吸引了国内外材料制备研究的兴趣,石墨烯材料的制备方法已报道的有:机械剥离法、化学氧化法、晶体外延生长法、化学气相沉积法、有机合成法和碳纳米管剥离法等。

微机械剥离法

2004年,Geim等首次用微机械剥离法,成功地从高定向热裂解石墨(highly oriented pyrolytic graphite)上剥离并观测到单层石墨烯。Geim研究组利用这一方法成功制备了准二维石墨烯并观测到其形貌,揭示了石墨烯二维晶体结构存在的原因。微机械剥离法可以制备出高质量石墨烯,但存在产率低和成本高的不足,不满足工业化和规模化生产要求,只能作为实验室小规模制备。

化学气相沉积法

化学气相沉积法(Chemical Vapor Deposition,CVD)首次在规模化制备石墨烯的问题方面有了新的突破(参考化学气相沉积法制备高质量石墨烯)。CVD法是指反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。

麻省理工学院的Kong等、韩国成均馆大学的Hong等和普渡大学的Chen等在利用CVD法制备石墨烯。他们使用的是一种以镍为基片的管状简易沉积炉,通入含碳气体,如:碳氢化合物,它在高温下分解成碳原子沉积在镍的表面,形成石墨烯,通过轻微的化学刻蚀,使石墨烯薄膜和镍片分离得到石墨烯薄膜。这种薄膜在透光率为80%时电导率即可达到1.1×106S/m,成为透明导电薄膜的潜在替代品。用CVD法可以制备出高质量大面积的石墨烯,但是理想的基片材料单晶镍的价格太昂贵,这可能是影响石墨烯工业化生产的重要因素。CVD法可以满足规模化制备高质量石墨烯的要求,但成本较高,工艺复杂。

氧化还原法

氧化-还原法制备成本低廉且容易实现,成为制备石墨烯的最佳方法,而且可以制备稳定的石墨烯悬浮液,解决了石墨烯不易分散的问题。氧化-还原法是指把天然石墨与强酸和

强氧化性物质反应生成氧化石墨(GO),经过超声分散制备成氧化石墨烯(单层氧化石墨),加入还原剂去除氧化石墨表面的含氧基团,如羧基、环氧基和羟基,得到石墨烯。

氧化-还原法被提出后,以其简单易行的工艺成为实验室制备石墨烯的最简便的方法,得到广大石墨烯研究者的青睐。Ruoff等发现通过加入化学物质例如二甲肼、对苯二酚、硼氢化钠(NaBH4)和液肼等除去氧化石墨烯的含氧基团,就能得到石墨烯。氧化-还原法可以制备稳定的石墨烯悬浮液,解决了石墨烯难以分散在溶剂中的问题。

氧化-还原法的缺点是宏量制备容易带来废液污染和制备的石墨烯存在一定的缺陷,例如,五元环、七元环等拓扑缺陷或存在-OH基团的结构缺陷,这些会导致石墨烯部分电学性能的损失,使石墨烯的应用受到限制。

溶剂剥离法

溶剂剥离法的原理是把少量的石墨分散于溶剂中,形成低浓度的分散液,利用超声波的作用破坏石墨层间的范德华力,此时溶剂可以插入石墨层间,进行层层剥离,制备出石墨烯。此方法不会像氧化-还原法那样破坏石墨烯的结构,可以制备高质量的石墨烯。在氮甲基吡咯烷酮中石墨烯的产率最高(大约为8%),电导率为6500S/m。研究发现高定向热裂解石墨、热膨胀石墨和微晶人造石墨适合用于溶剂剥离法制备石墨烯。溶剂剥离法可以制备高质量的石墨烯,整个液相剥离的过程没有在石墨烯的表面引入任何缺陷,为其在微电子学、多功能复合材料等领域的应用提供了广阔的应用前景。缺点是产率很低。

溶剂热法

溶剂热法是指在特制的密闭反应器(高压釜)中,采用有机溶剂作为反应介质,通过把反应体系加热至临界温度(或接近临界温度),在反应体系中自身产生高压而进行材料制备的一种有效方法。

溶剂热法解决了规模化制备石墨烯的问题,同时也带来了电导率很低的负面影响。为解决由此带来的不足,研究者把溶剂热法和氧化还原法相结合制备出了高质量的石墨烯。Dai等发现溶剂热条件下还原氧化石墨烯制备的石墨烯薄膜电阻小于传统条件下制备石墨烯。溶剂热法因高温高压封闭体系下可制备高质量石墨烯的特点越来越受科学家的关注。溶剂热法和其他制备方法的结合会成为石墨烯制备的又一亮点。

其它方法

石墨烯的制备方法还有高温还原、光照还原、外延晶体生长法、微波法、电弧法、电化学法等。笔者在以上基础上提出一种机械法制备纳米石墨烯微片的新方法,并尝试宏量生产石墨烯的研究中取得较好的成果。如何综合运用各种石墨烯制备方法的优势,取长补短,解决石墨烯的难溶解性和不稳定性的问题,完善结构和电性能等是今后研究的热点和难点,也为今后石墨烯的制备与合成开辟新的道路。

7技术发展 编辑

美国能源部国家直线加速器实验室(SLAC)和斯坦福大学的一项研究首次揭示了石墨烯插层复合材料的超导机制,并发现一种潜在的工艺能使石墨烯这个具有广阔应用前景的“材料之王”获得人们梦寐以求的超导性能。该研究有助于推动石墨烯在超导领域的应用,开发出高速晶体管、纳米传感器和量子计算设备。相关论文发表在2014年3月20日出版的《自然通讯》杂志上。

石墨烯是一种呈蜂巢状排列的单层碳原子结构,是已知的最薄、强度最高的物质,具有优良的物理化学性能。科学家希望用石墨烯制成高速晶体管、传感器乃至透明电极。此前,人们就已知道掺杂金属原子的石墨烯插层材料具有二维超导性能。但科学家们一直无法确定超导性是来源于金属、石墨烯还是两者兼而有之。新研究首次通过令人信服的证据,证明了是石墨烯在其中起到了关键作用。为相关材料在纳米级电子器件领域的应用铺平了道路。

物理学家组织网2014年3月21日的报道中称,研究人员是通过强紫外线对一种名为钙插层石墨烯(CaC6)的材料进行研究后得出上述结论的。CaC6是纯钙晶体与石墨发生化学反应所得到的石墨烯插层复合材料,由单层碳原子石墨烯和单层原子钙交替复合而成。

研究人员把一份来自英国伦敦大学学院(UCL)的CaC6样品在斯坦福同步辐射光源实验室(SSRL)进行了分析。高强度的紫外线能够帮助他们深入到材料内部进行观察,分清每层内的电子是如何运动的。实验显示,电子在石墨烯和钙原子层之间来回散射,与材料的原子结构发生自然振动并发生配对,从而获得了无电阻的导电性。

韩国研究人员在硅基底上成功合成了晶片级的高质量多层石墨烯。该方法基于一种离子注入技术,简单而且可升级。这一成果使石墨烯离商业应用更近一步。晶片级的石墨烯可能是微电子线路中一个必不可少的组成部分,但大部分石墨烯制造方法都与硅微电子器件不兼容,阻碍了石墨烯从潜在材料向实际应用的跨越。[2]

8应用前景

编辑

纳电子器件方面

2005年,Geim研究组J与Kim研究组H 发现,室温下石墨烯具有10倍于商用硅片的高载流子迁移率(约10 am /V·s),并且受温度和掺杂效应的影响很小,表现出室温亚微米尺度的弹道传输特性(300 K下可达0.3 m),这是石墨烯作为纳电子器件最突出的优势,使电子工程领域极具吸引力的室温弹道场效应管成为可能。较大的费米速度和低接触电阻则有助于进一步减小器件开关时间,超高频率的操作响应特性是石墨烯基电子器件的另一显著优势。此外,石墨烯减小到纳米尺度甚至单个苯环同样保持很好的稳定性和电学性能,使探索单电子器件成为可能。

利用石墨烯加入电池电极材料中可以大大提高充电效率,并且提高电池容量。自我装配的多层石墨烯片不仅是锂空气电池的理想设计,也可以应用于许多其他潜在的能源存储领域如超级电容器、电磁炮等。此外,新型石墨烯材料不依赖于铂或其他贵金属,可有效降低成本和对环境的影响。

代替硅生产超级计算机

科学家发现,石墨烯还是已知导电性能最出色的材料。石墨烯的这种特性尤其适合于高频电路。高频电路是现代电子工业的领头羊,一些电子设备,例如手机,由于工程师们设法把越来越多的信息填充在信号中,它们被要求使用越来越高的频率,然而手机的工作频率越高,热量也越高,于是,高频的提升便受到很大的限制。由于石墨烯的出现,高频提升的发展前景似乎变得无限广阔了。 这使它在微电子领域也具有巨大的应用潜力。研究人员甚至把石墨烯看作是硅的替代品,能用来生产未来的超级计算机。

光子传感器

石墨烯还可以以光子传感器的面貌出现在更大的市场上,这种传感器是用于检测光纤中携带的信息的,现在,这个角色还在由硅担当,但硅的时代似乎就要结束。IBM的一个研究小组首次披露了他们研制的石墨烯光电探测器,接下来人们要期待的就是基于石墨烯的太阳能电池和液晶显示屏了。因为石墨烯是透明的,用它制造的电板比其他材料具有更优良的透光性。

基因电子测序

由于导电的石墨烯的厚度小于DNA链中相邻碱基之间的距离以及DNA四种碱基之间存在电子指纹,因此,石墨烯有望实现直接的,快速的,低成本的基因电子测序技术。

减少噪音

美国IBM 宣布,通过重叠2层相当于石墨单原子层的“石墨烯(Graphene)”,试制成功了新型晶体管,同时发现可大幅降低纳米元件特有的1/f。石墨烯,试制成功了相同的晶体管,不过与预计的相反,发现能够大幅控制噪音。通过在二层石墨烯之间生成的强电子结合,从而控制噪音。噪声。

隧穿势垒材料

量子隧穿效应是一种衰减波耦合效应,其量子行为遵守薛定谔波动方程,应用于电子冷发射、量子计算、半导体物理学、超导体物理学等领域。传统势垒材料采用氧化铝、氧化镁等材料,由于其厚度不均、容易出现孔隙和电荷陷阱,通常具有较高的能耗和发热量,影响到了器件的性能和稳定性,甚至引起灾难性失败。基于石墨烯在导电、导热和结构方面的优势,美国海军研究试验室(NRL)将其作为量子隧穿势垒材料的首选。未来得石墨烯势垒有可能在隧穿晶体管、非挥发性磁性记忆体和可编程逻辑电路中率先得以应用。

其它应用

石墨烯还可以应用于晶体管、触摸屏、基因测序等领域,同时有望帮助物理学家在量子物理学研究领域取得新突破。中国科研人员发现细菌的细胞在石墨烯上无法生长,而人类细胞却不会受损。利用这一点石墨烯可以用来做绷带,食品包装甚至抗菌T恤;用石墨烯做的光电化学电池可以取代基于金属的有机发光二极管,因石墨烯还可以取代灯具的传统金属石墨电极,使之更易于回收。这种物质不仅可以用来开发制造出纸片般薄的超轻型飞机材料、制造出超坚韧的防弹衣,甚至能让科学家梦寐以求的2.3万英里长太空电梯成为现实。

9发展趋势 编辑

石墨烯2010年的诺贝尔物理学奖把石墨烯带入了

人们的视线。2004年英国曼彻斯特大学的安德烈·海姆教授和康斯坦丁·诺沃肖洛夫教授通

石墨烯材料的介绍 

不一样,但它们是同质异位素,这样离子源内表面的沉积也会对测定结果带来影响。记忆效应的强弱与所采用的样品化合物的形式有关,如进行锂同位素测定时,采用不同锂化合物凃样,定量测定的记忆的锂量相差很大,其中以LiF的记忆效应最强。6制备方法编辑石墨烯的研究热潮也吸引了国内外材料制备研究的兴趣,石墨烯材料的制备方法已报道的有:机械剥离法、化学氧化法、晶
推荐度:
点击下载文档文档为doc格式
7p7kr13xui9y6yn8bcwm
领取福利

微信扫码领取福利

微信扫码分享