好文档 - 专业文书写作范文服务资料分享网站

电力系统潮流分析报告

天下 分享 时间: 加入收藏 我要投稿 点赞

潮流计算的意义

(1)在电网规划阶段,通过潮流计算,合理规划电源容量及接入点,合理规划网架,选择无功补偿方案,满足规划水平的大、小方式下潮流交换控制、调峰、调相、调压的要求。 (2)在编制年运行方式时,在预计负荷增长及新设备投运基础上,选择典型方式进行潮流计算,发现电网中薄弱环节,供调度员日常调度控制参考,并对规划、基建部门提出改进网架结构,加快基建进度的建议。

(3)正常检修及特殊运行方式下的潮流计算,用于日运行方式的编制,指导发电厂开机方式,有功、无功调整方案及负荷调整方案,满足线路、变压器热稳定要求及电压质量要求。 (4)预想事故、设备退出运行对静态安全的影响分析及作出预想的运行方式调整方案。

总结为在电力系统运行方式和规划方案的研究中,都需要进行潮流计算以比较运行方式或规划供电方案的可行性、可靠性和经济性。同时,为了实时监控电力系统的运行状态,也需要进行大量而快速的潮流计算。因此,潮流计算是电力系统中应用最广泛、最基本和最重要的一种电气运算。在系统规划设计和安排系统的运行方式时,采用离线潮流计算;在电力系统运行状态的实时监控中,则采用在线潮流计算。

编辑本段潮流计算的发展史

利用电子计算机进行潮流计算从20世纪50年代中期就已经开始。此后,潮流计算曾采用了各种不同的方法,这些方法的发展主要是围绕着对潮流计算的一些基本要求进行的。对潮流计算的要求可以归纳为下面几点: (1)算法的可靠性或收敛性 (2)计算速度和存占用量 (3)计算的方便性和灵活性

电力系统潮流计算属于稳态分析畴,不涉及系统元件的动态特性和过渡过程。因此其数学模型不包含微分方程,是一组高阶非线性方程。非线性代数方程组的解法离不开迭代,因此,潮流计算方法首先要求它是能可靠的收敛,并给出正确答案。随着电力系统规模的不断扩大,潮流问题的方程式阶数越来越高,目前已达到几千阶甚至上万阶,对这样规模的方程式并不是采用任何数学方法都能保证给出正确答案的。这种情况促使电力系统的研究人员不断寻求新的更可靠的计算方法。

在用数字计算机求解电力系统潮流问题的开始阶段,人们普遍采用以节点导纳矩阵为基础的高斯-赛德尔迭代法(一下简称导纳法)。这个方法的原理比较简单,要求的数字计算机的存量也比较小,适应当时的电子数字计算机制作水平和电力系统理论水平,于是电力系统计算人员转向以阻抗矩阵为主的逐次代入法(以下简称阻抗法)。

20世纪60年代初,数字计算机已经发展到第二代,计算机的存和计算速度发生了很大的飞跃,从而为阻抗法的采用创造了条件。阻抗矩阵是满矩阵,阻抗法要求计算机储存表征系统接线和参数的阻抗矩阵。这就需要较大的存量。而且阻抗法每迭代一次都要求顺次取阻抗矩阵中的每一个元素进行计算,因此,每次迭代的计算量很大。

阻抗法改善了电力系统潮流计算问题的收敛性,解决了导纳法无法解决的一些系统的潮流计算,在当时获得了广泛的应用,曾为我国电力系统设计、运行和研究作出了很大的贡献。但是,阻抗法的主要缺点就是占用计算机的存很大,每次迭代的计算量很大。当系统不断扩大时,这些缺点就更加突出。为了克服阻抗法在存和速度方面的缺点,后来发展了以阻抗矩阵为基础的分块阻抗法。这个方法把一个大系统分割为几个小的地区系统,在计算机只需存储各个地区系统的阻抗矩阵及它们之间的联络线的阻抗,这样不仅大幅度的节省了存容量,同时也提高了节省速度。

克服阻抗法缺点的另一途径是采用牛顿-拉夫逊法(以下简称牛顿法)。牛顿法是数学中求解非线性方程式的典型方法,有较好的收敛性。解决电力系统潮流计算问题是以导纳矩阵为基础的,因此,只要在迭代过程中尽可能保持方程式系数矩阵的稀疏性,就可以大大提高牛顿潮流程序的计算效率。自从20世纪60年代中期采用了最佳顺序消去法以后,

牛顿法在收敛性、存要求、计算速度方面都超过了阻抗法,成为直到目前仍被广泛采用的方法。

在牛顿法的基础上,根据电力系统的特点,抓住主要矛盾,对纯数学的牛顿法进行了改造,得到了P-Q分解法。P-Q分解法在计算速度方面有显著的提高,迅速得到了推广。 牛顿法的特点是将非线性方程线性化。20世纪70年代后期,有人提出采用更精确的模型,即将泰勒级数的高阶项也包括进来,希望以此提高算法的性能,这便产生了保留非线性的潮流算法。另外,为了解决病态潮流计算,出现了将潮流计算表示为一个无约束非线性规划问题的模型,即非线性规划潮流算法。

近20多年来,潮流算法的研究仍然非常活跃,但是大多数研究都是围绕改进牛顿法和P-Q分解法进行的。此外,随着人工智能理论的发展,遗传算法、人工神经网络、模糊算法也逐渐被引入潮流计算。但是,到目前为止这些新的模型和算法还不能取代牛顿法和P-Q分解法的地位。由于电力系统规模的不断扩大,对计算速度的要求不断提高,计算机的并行计算技术也将在潮流计算中得到广泛的应用,成为重要的研究领域。

编辑本段潮流计算的发展趋势

通过几十年的发展,潮流算法日趋成熟。近几年,对潮流算法的研究仍然是如何改善传统的潮流算法,即高斯-塞德

尔法、牛顿法和快速解耦法。牛顿法,由于其在求解非线性潮流方程时采用的是逐次线性化的方法,为了进一步提高算法的收敛性和计算速度,人们考虑采用将泰勒级数的高阶项或非线性项也考虑进来,于是产生了二阶潮流算法。后来又提出了根据直角坐标形式的潮流方程是一个二次代数方程的特点,提出了采用直角坐标的保留非线性快速潮流算法。 对于保留非线性算法典型论文有:

1.文献[保留非线性的电力系统概率潮流计算]提出了它在电力系统概率潮流计算中的应用。该文献提出了一种新的概率潮流计算方法,它保留了潮流方程的非线性,又利用了P-Q解耦方法,因而数学模型精度较高,且保留了P-Q解耦的优点,有利于大电网的随机潮流计算,用提出的方法对一个典型的系统进行了计算,其数值用MonteCarlo随机模拟作了验证,得到了满意的结果。

2.文献[基于系统分割的保留非线性的快速P-Q解耦潮流计算法]分析研究了保留非线性的P-Q解耦快速潮流计算法。该文献提出了一种新的状态估计算法,既保留了量测方程非线性又利用了快速P-Q分解方法,因此数学模型精度高且保留了快速P-Q分解的优点,提高了状态估计的计算精度和速度.采用系统分割方法将大系统分割为多个小系统,分别对每个小系统进行状态估计,然后对各小系统的状态估计结果进行协调,得到整个系统具有同一参考节点的状态估计结果,

7p5s25w5544m0xd0pw4b4c2db011w500m4w
领取福利

微信扫码领取福利

微信扫码分享