第12课时:有理数的加减混合运算(2) 教学内容:
教科书第45—48页,2.8有理数的加减混合运算。
教学目的和要求:
1.让学生熟练地进行有理数加减混合运算,并利用运算律简化运算。 2.培养学生的运算能力。
教学重点和难点:
重点:准确迅速地进行有理数的加减混合运算,加减运算法则和加法运算律。
难点:减法直接转化为加法及混合运算的准确性,省略加号与括号的代数和计算。
教学工具和方法:
工具:应用投影仪,投影片。 方法:分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
1.什么叫代数和?说出―6+9―8―7+3两种读法。 2.计算:
(1)(―12)―(+8)+(―6)―(―5); (2)(+3.7)―(―2.1)―1.8+(―2.6);
(3)(―16)+(+20)―(+10)―(―11); (4)???1??1??1??1??????????????。 2???3??4??6?二、讲授新课:
1.概述:
在有理数加法运算中,通常适当应用加法运算律,可使计算简化。有理数的加减混合运算统一成加法后,一般也应注意运算的合理性。
2.例题:
例1:计算:
①-24+3.2―16―3.5+0.3; ②0?21???3????2?3?3??2?????0.25?
4??3?解:(1)因为原式表示―24,3.2,―16,―3.5,0.3的和,所以可将加数适当交换位置,并作适当的结合进行计算,即原式=―24―16+3.2+0.3―3.5 =―40+3.5―3.5 =―40+0
=―40。
(2) 原式==0?21???3????2?3?23213??2??1??21?3?? =?????34344??3??4?第 31 页 共 60 页
=?21223111??3?=?21?3=?17 334422例2:―3、+5、―7的代数和比它们的绝对值的和小多少?
分析:让学生理解代数和的概念、绝对值的和、比??小的问题的求法。 解:由题意得:(|―3|+|+5|+|―7|)―(―3+5―7) =(3+5+7)―(―5) =15+5=20 3.课堂练习:
课本:P47:2。
三、课堂小结:
有理数的加减法可统一成加法,从而有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算。
四、课堂作业:
课本:P48:3,4,5。
板书设计:
《有理数的加减混合运算(2)》 例1.①????? 例1.②????? 例2.????? ??????? ??????? ??????? ??????? ??????? ??????? ?????? ??????? ??????? 学生练习:?? ??????? ?????? ??????? ??????? ??????? ??????? ??????? ??????? ??????? ??????? ??????? 教学后记:
本课时是习题课。通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能。讲课前教师认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正。
第 32 页 共 60 页
第13课时:有理数的乘法(1) 教学内容:
教科书第50—52页,2.9有理数的乘法:1.有理数的乘法法则。
教学目的和要求:
1.使学生在了解有理数乘法的意义的基础上,掌握有理数乘法法则,并初步掌握有理数乘法法则的合理性。
2.培养学生观察、归纳、概括及运算能力。
教学重点和难点:
重点:有理数乘法的运算。 难点:有理数乘法中的符号法则。
教学工具和方法:
工具:应用投影仪,投影片。 方法:分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
1.计算:(―2)+(―2)+(―2)。
2.有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)
3.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题) 4.根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你 能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?
(负数问题,符号的确定) 二、讲授新课:
1.师生共同研究有理数乘法法则: ①研究实际问题:
问题1:一只小虫沿一条东西向的跑道,以每分钟3米的速度向东爬行2分钟,那么它现在位于原来的位置的那个方向,相距多少米?
我们知道,这个问题可用乘法来解答: 332=6,① 即小虫位于原来位置的东方6米处。
注意:这里我们规定向东为正,向西为负。如果上述问题变为:
问题2:小虫向西以每分钟3米的速度爬行2分钟,那么结果有何变化? 这也不难,写成算式就是: (-3)32=-6, ② 希望由学生观即小虫位于原来位置的西方6米处。 察、总结得出! ②引导学生比较上面两个算式,有什么发现?
当我们把“332=6”中的一个因数“3”换成它的相反数 “-3”时,所得的积是原来的积“6”的相反数“-6”,一般地,我们有: 把一个因数 换成它的相反数,所得的积是原来的积的相反数.
③这是一条很重要的结论,应用此结论,33(―2)=? (―3)3(―2)=?(学生答)把33(―2)和①式对比,这里把一个因数“2”换成了它的相反数“―2”,所得的积应是原来的积“6”的相反数“―6”,即33(―2)=―6。把(―3)3(―2)和②式对比,这里把一个因数“2”换成了它的相反数“―2”,所得的积应是原来的积“―6”的相反数“6”,即(―3)3(―2)=6。此外,(―3)30=0
第 33 页 共 60 页
同330=0作比较。
④综合上面各种情况,引导学生自己归纳出有理数乘法的法则:
两数相乘,同号得正,异号得负,并把绝对值相乘; 任何数同0相乘,都得0
⑤继而教师强调指出:
“同号得正”中正数乘以正数得正数就是小学学习的乘法,有理数中特别注意“负负得正”和“异号得负”。
用有理数乘法法则与小学学习的乘法相比,由于介入了负数,使乘法较小学当然复杂多了,但并不难,关键仍然是乘法的符号法则:“同号得正,异号得负”,符号一旦确定,就归结为小学的乘法了。
因此,在进行有理数乘法时更需时时强调:先定符号后定值。 例如: 再如: (-5)3(-3)22222222222同号两数相乘 (-6)3422222222222222异号两数相乘 (-5)3(-3)=+( )222222222222得正 (-6)34=-( )2222222222222222得负 533=152222222222222把绝对值相乘 634=2422222222222222把绝对值相乘 所以 (-5)3(-3)=15。 所以 (-6)34=-24。 2.例题:
1?1例1:计算:①(-5)3(-6) ②???????
?2?4解:①原式=+(5×6)=+30=30。 ②原式=―(
11?24)=―
18 3.课堂练习: 课本:P52:1,2,3。 三、课堂小结:
今天主要学习了有理数乘法法则,要牢记两个负数相乘得正数,简单地说:“负负得正”。 四、课堂作业: 课本:P57:1,2。
板书设计:
《有理数的乘法(1)》 乘法法则:????? 例1.①????? 例1.②???? ??????? ??????? ??????? ??????? ??????? ??????? 学生练习:?? ??????? ?????? ??????? ??????? ??????? ??????? ??????? ??????? ??????? ??????? ??????? 教学后记:
有理数乘法法则,实际上是一种规定(或说定义),要完全理解这样规定的科学性、合理性对中学生来说是不可能的。那么,怎样才能使学生接受(或说承认,不拒绝)有理数乘法法则呢?值得探讨、研究。
第 34 页 共 60 页
第14课时:有理数的乘法(2) 教学内容:
教科书第52—55页,2.9有理数的乘法:2.有理数乘法的运算律。
教学目的和要求:
1.使学生掌握有理数乘法的运算律,并利用运算律简化乘法运算。 2.使学生掌握多个有理数相乘的积的符号法则。 3.培养学生观察、归纳、概括及运算能力。
教学重点和难点:
重点:乘法的符号法则和乘法的运算律。 难点:积的符号的确定。
教学工具和方法:
工具:应用投影仪,投影片。 方法:分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
1.叙述有理数乘法法则。 2.计算:
(1)53(―6); (2)(―6)35; (3)[33(―4)]3(―5); (4)33[(―4)3(―5)];
二、讲授新课:
1.师生共同研究有理数乘法运算律: ①问题:
在小学里,我们曾经学过乘法的交换律、结合律,这两个运算律在有理数乘法运算中也是成立的吗?
②探索:
你能发现什*任意选择两个有理数(至少有一个是负数),分别填入下列□和○内, 么? 并比较两个算式的运算结果。
□ 3 ○ 和○ 3 □ 。
*任意选择三个有理数(至少有一个是负数),分别填入下列□、○和 ◇内,并比较两个算式的运算结果。
很重要! ( □ 3 ○ )3 ◇ 和□ 3( ○ 3 ◇ )。 ③总结:让学生总结出乘法的交换律、结合律。 乘法交换律:两个数相乘,交换因数的位置,积不变。即 a b = b a 乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。即(ab)c=a(bc) ④根据乘法交换律和结合律可以推出:三个以上有理数相乘,可以任意交换乘数的位置,也可以先把其中的几个数相乘.
第 35 页 共 60 页