绝密★启用前
2017年普通高等学校招生全国统一考试
理科数学
注意事项:
1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域
内。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
3?i?( ) 1?iA.1?2i B.1?2i C.2?i D.2?i
1.
2.设集合???1,2,4?,??xx?4x?m?0.若?2?????1?,则??( )
A.?1,?3? B.?1,0? C.?1,3? D.?1,5? 3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A.1盏 B.3盏 C.5盏 D.9盏
4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )
A.90? B.63? C.42? D.36?
1
?2x?3y?3?0?5.设x,y满足约束条件?2x?3y?3?0,则z?2x?y的最小值是( )
?y?3?0?A.?15 B.?9 C.1 D.9 6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )
A.12种 B.18种 C.24种 D.36种
7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )
A.乙可以知道四人的成绩 B.丁可以知道四人的成绩 C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩 8.执行右面的程序框图,如果输入的a??1,则输出的S?( )
A.2 B.3 C.4 D.5
x2y229.若双曲线C:2?2?1(a?0,b?0)的一条渐近线被圆?x?2??y2?4所截得的
ab弦长为2,则C的离心率为( )
A.2 B.
3 C.2
2
D.23 310.已知直三棱柱??C??1?1C1中,???C?120,???2,?C?CC1?1,则异面直线??1与?C1所成角的余弦值为( )
A.331510 B. C. D. 23552x?1`11.若x??2是函数f(x)?(x?ax?1)e的极值点,则f(x)的极小值为( )
A.?1 B.?2e?3 C.5e?3 D.1
12.已知?ABC是边长为2的等边三角形,P为平面ABC内一点,则PA?(PB?PC)的最小值是( )
A.?2 B.?34 C. ? 23D.?1
二、填空题:本题共4小题,每小题5分,共20分。
13.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,?表示抽到的二等品件数,则D?? . 14.函数f?x??sin2x?3cosx?3???(x??0,?)的最大值是 . 4?2?15.等差数列?an?的前n项和为Sn,a3?3,S4?10,则
21? . ?k?1Skn16.已知F是抛物线C:y?8x的焦点,若?F?的延长线交y轴于点?.?是C上一点,为F?的中点,则F?? .
三、解答题:共70分。解答应写出文字说明、解答过程或演算步骤。第17~21题为必做题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。 (一)必考题:共60分。 17.(12分)
?ABC的内角A,B,C的对边分别为a,b,c ,已知sin(A?C)?8sin2(1)求cosB
(2)若a?c?6 , ?ABC面积为2,求b.
3
B. 2
18.(12分)
淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg)某频率直方图如下:
(1) 设两种养殖方法的箱产量相互独立,记A表示事件:旧养殖法的箱产量低于50kg, 新
养殖法的箱产量不低于50kg,估计A的概率;
(2) 填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
旧养殖法 新养殖法 箱产量<50kg 箱产量≥50kg
(3) 根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)
P(k 2) 0.050 3.841 0.010 6.635 0.001 10.828 n(ad?bc)2K?
(a?b)(c?d)(a?c)(b?d)
19.(12分)
如图,四棱锥P-ABCD中,侧面PAD为等比三角形且垂直于底面ABCD,
1AD,?BAD??ABC?90o, E是PD的中点. 2(1)证明:直线CE// 平面PAB AB?BC?(2)点M在棱PC 上,且直线BM与底面ABCD所成锐角为45 ,求二面角M-AB-D的余弦值
o 4
20. (12分)
x2?y2?1上,过M做x轴的垂线,垂足为N,点P设O为坐标原点,动点M在椭圆C:2满足NP?2NM.
(1) 求点P的轨迹方程;
(2) 设点Q在直线x=-3上,且OP?PQ?1.证明:过点P且垂直于OQ的直线l过C的左焦点F. 21.(12分)
已知函数f(x)?ax?ax?xlnx,且f(x)?0. (1)求a;
(2)证明:f(x)存在唯一的极大值点x0,且e?23?f(x0)?2?3.
(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,按所做的第一题计分。
22.[选修4-4:坐标系与参数方程](10分)
在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为?cos??4.
(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|?|OP|?16,求点P的轨迹C2的直角坐标方程; (2)设点A的极坐标为(2,?3),点B在曲线C2上,求?OAB面积的最大值.
23.[选修4-5:不等式选讲](10分) 已知a?0,b?0,a?b?2,证明: (1)(a?b)(a?b)?4; (2)a?b?2.
5
3333