一 求下列极限 1 lim
高等数学模拟卷 1
1sinn=0(有界量乘无穷小量) n??n?exx?0af(x)?取什么值,连续 ?二
?a?xx?0答:根据函数在一点处连续的定义,lim?f(x)?a?lim?f(x),而
x?0x?0x?1xx?0x2 求lim={
x?0x?xlim??1x?0?xlim?
3 求lime={x?01xx?0lim?f(x)=lim?ex=1
x?0所以 a=1
三 计算下列各题 1
求
y’=2(sinx·lnx)’=2[(sinx)’(lnx)+(sinx)(lnx)’] =2cosxlnx+2
已
知
x?0?lime??x?0?1xy?2sinx?lnxlime?01x
y, 答:
sinx xxf(x)4=
limx?0x?sinxx?sin5x
2 已知y?f(e)?e,求y,
xsinxxsinx111xxlim?lim?lim?lim???fexex?f?x?x?0x?sinxx?0x?sin5xx?0x 5sin5xx?0x5sin5x663所以y'?xf?x???1?feex5xx5xdyxxf?x?xf?x?dy?fee?e?fee答:由链式法则,
dxdx????????(第一个重要极限)
1 / 5
3答:
求?xexdx
2 1 lim
1cosn=0 n??nx21x221x2原式??ed??edx?e?c222
x2四、若2x?tan(x?y)??x?y0sec2tdt,求
dy dx2?x?lim=12?x2?x??x?2-2?x2 求lim=lim =?x?22?xx?22?xx?2?lim=-1+x?2?2?x?1?lim2x??11???x?03 求lim2x=lim2x?? 1x?0x?0?lim2x?0??x?0?
另x-y=m, y=x-m, 对两边求导数,得到dy/dx = 1 - dm/dx 将y = x-m 带回原式,再两边对x求导。可得dm/dx 带回上式可得结果
五 求y?x,y?2x和y?x所围平面图形的面积
解
:
24求limx?0x?2sinxx?3sinx x?2sinx3=
x?3sinx4?sinx?f(x)??x?0??3??222?21?4??yy?y?y?1yy41???y??dy???y??dy?????????0?12?2?4?0?34?13???2???2?
解
limx?0二讨论x?0x?0在 x=0 处的连续性
高等数学模拟卷 2
答:因为f(x)在0点的左右极限都为1,不等于其在0点的函数值,所以f(x)
一 求下列极限
2 / 5
在0点不连续三 计算下列各题 1 y?ln[ln(lnx)]求y,
y,?1[ln(lnx)].[ln(lnx)]??111[ln(lnx)].lnx.x
2 xy?yx求y,,
解:lnxy?lnyxy.lnx?x.lnyy,.lnx?y1x?lny?y.y?.x
y???lnx?x??y???lny?yxlny?y?y??xlnx?xy2x2四求limx??0cost2dtx?0sin10x
由于分子分母极限都为0,所以可以对分子分母分别求导,得到
Lim( 2x-2xcosx^4)/10sin^9(x)cosx 再对两边求导
五 求y2?2x?5和y?x?4所围平面图形的面积
解:?y2?2x?5y?x?4得交点?3,-1??7,3??3y2s??5113316
1y?4?2dy?2y2?6y3??2y?1?3六 (x2?1)dydx?2xy?4x2
解:两边同除以(x2?1)得dy2xy4dx?(x2?1)?x2(x2?1)y?ce??p(x)dx=ce??2xx2?1dx=ce?lnx2?1?cx2?1
代入原方程得c?(x)?4x24c(x)??4x2dx?43x3?D3x3?D?y?x2?1
3 / 5
高等数学模拟卷3
一 求下列极限 1 lim1n??ntgn 解:不存在 ?x?2 求limx?ax?a??xlima=?a+x?1x?ax?a=limx?ax?a=?a ?lima?x??x?a-x?a??1?111lime23 求lim2xx?0e=lim2xx?0e???x?x?0??? ?1??limx?0?e2x?04limsinmxx?0sinnx?limmxx?0nx?mn
二已知f(x)???xx?0?x2x?0,讨论f(x)在x?0处的导数
解:Qlimf?0??x??f?0??x?x?0+?x??limx?0+?x?1f?0??x??f?0??x2?limx?0-?x??limx?0-?x?0 ?f(x)在x?0不可导三 计算下列各题
1、已知y?tan3(lnx)求y,
解:y??3tan2(lnx).sec2?lnx?.1x
2、已知y?f(x2),求y,
解: y?=f?(x2).2x
四 证明?a320xf(x)dx?12?a20xf(x)dx,(a?0),其中f(x)在
讨论的区间连续。
4 / 5
证明1Q?xf(x)dx??x2f(x2)dx2002令x2=u当x?0时u?0,x?a时,u?a2a32a解:令(arctany?x)?u则u??21.y??121?yy???u??1?.?1?y2??
?a0xf(x)dx????32a0121a21a2xf(x)dx??uf(u)du??xf(x)dx2202022五 计算反常积分
dx???1?x2;
1?y2则原方程为?u??1?.?1?y?=u1?u??1??uduu?1u?变量分离du?dxdxuu?1两边同时积分得:u?ln?u?1??x?c所以原方程的通解为:(arctany?x)+ln?arctany?x?1??x?c0??dx0??dxdx????解:???arctanx?arctanx???????????1?x2???1?x2?01?x2??0?2?2??
六 求(1?y)dx?(arctany?x)dy的通解
2
5 / 5