好文档 - 专业文书写作范文服务资料分享网站

高等数学课后习题答案第十二章

天下 分享 时间: 加入收藏 我要投稿 点赞

1.写出下列级数的一般项:

题十二

1111????L357(1)

(2)

xxxxx2????L22?42?4?62?4?6?8;

a3a5a7a9????L579(3)31Un?2n?1; 解:(1)

Un?

(2)

xn2?2n?!!;

n?1 (3)

2.求下列级数的和:

?Un???1?a2n?12n?1;

(1)

??x?n?1??x?n??x?n?1?n?11;

(2)

??n?1?n?2?2n?1?n?;

111?2?3?L5(3)55;

un?1?x?n?1??x?n??x?n?1?解:(1)

111?????2??x?n?1??x?n??x?n??x?n?1???

11111????Sn??2?x?x?1??x?1??x?2??x?1??x?2??x?2??x?3?11??L???x?n?1??x?n??x?n??x?n?1???111??????x??????2x?1x?nx?n?1??从而

11limSn?n??2x?x?1?,故级数的和为2x?x?1? 因此

(2)因为

Un??n?2?n?1???n?1?n?

Sn??3?2???2?1???4?3???3?2???5?4???4?3??L??n?2?n?1???n?1?n??n?2?n?1?1?21??1?2n?2?n?1从而

所以n??limSn?1?2,即级数的和为1?2.

111Sn??2?L?n5551??1?n?1????5??5????11?51??1?n???1????4??5??(3)因为

从而

3.判定下列级数的敛散性:

limSn?n???114,即级数的和为4.

(1)

??n?1n?1?n?;

(2)

1111???L??L1?66?1111?16?5n?4??5n?1?;

n22223n?12?3?3?L???1??Ln3333(3)

1111??3?L?n?L555(4)5;

Sn??2?1???3?2??L??n?1?n?解:(1) 从而n???n?1?1,故级数发散.

limSn???1?1111111?Sn??1??????L???5?661111165n?45n?1?1?1???1??55n?1??(2)

11limSn?n??5,故原级数收敛,其和为5. 从而

2q??3的等比级数,且|q|<1,故级数收敛. (3)此级数为1Un?nlimUn?1?05(4)∵,而n??,故级数发散.

4.利用柯西审敛原理判别下列级数的敛散性:

(1)

??1?n?1?nn?1??; (2)

cosnx?2n; n?1?(3)

解:(1)当P为偶数时, 当P为奇数时,

因而,对于任何自然数P,都有

11??1?????3n?23n?3?. n?1?3n?1Un?1?Un?2?L?Un?p?11?n?1n,

?1?N????1???,则当n>N时,对任何自然数P恒有Un?1?Un?2?L?Un?p??成立,由柯西审敛原理ε>0,取

??1?n?1?n知,级数n?1?收敛.

(2)对于任意自然数P,都有

1??log2?????,当n>N时,对任意的自然数P都有Un?1?Un?2?L?Un?p??成立,由柯于是, ε>0(0<ε<1),N=

西审敛原理知,该级数收敛.

(3)取P=n,则

从而取数发散.

5.用比较审敛法判别下列级数的敛散性.

?0?112,则对任意的n∈N,都存在P=n所得Un?1?Un?2?L?Un?p??0,由柯西审敛原理知,原级

111??L??L????n?3n?5(1)4?65?71?21?31?n1???L??L2221?21?31?n(2)

πsinn?3(3)n?1?;

?;

(4)

n?1??12?n31n;

1?n1?an?1(5)

解:(1)∵

??a?0?;

(6)

??2n?1?1?.

Un?1?2nn?1而

(2)∵

??11?2?n?3??n?5?n

收敛,由比较审敛法知

?Un?1?n收敛.

Un?1?n1?n1??221?nn?nn

1?而n?1n发散,由比较审敛法知,原级数发散.

ππsinnn33lim?limπ??πn??n??1π3n3n(3)∵

sinπ?n而n?13?收敛,故

?sin3n?1?πn也收敛.

Un?(4)∵

12?n3??1n31?1n32

?而

n?1?1n32?收敛,故

n?12?n3收敛.

??1111Un????nnnna1?an?1n?11?aa(5)当a>1时,,而收敛,故

11limUn?lim??0n??22当a=1时,n??,级数发散.

1limUn?lim?1?0n??n??1?an当0

也收敛.

综上所述,当a>1时,原级数收敛,当0

2?1?ln2?1?1?1x??2x?11lim?ln2??2n?1x?0nnn?1n?1x(6)由知而发散,由比较审敛法知

lim1n??发散.

6.用比值判别法判别下列级数的敛散性:

(1)

n2?nn?13?;

n!?n3?1; n?1(2)

?332333n???L??L23n1?22?23?2n?2(3)

(1)

2n?n!?nn n?1?n2Un?n3解:(1)

Un?1?n?1?23n1lim?limn?1?2??1n??Un??3n3n,,

由比值审敛法知,级数收敛.

Un?1?n?1?!3n?1lim?limn?1?n??Un??3?1n!n3n?1?lim?n?1??n?1n??3?1???

(2)

所以原级数发散.

Un?13n?1n?2nlim?lim?nn?1n??Un?????23n?1n?lim?3n2?n?1?

n??(3)

所以原级数发散.

3?12Un?12n?1??n?1?!nnlim?lim?nn?1n??Un???2?n!?n?1n?n??lim2??n???n?1?12?2lim??1nn??e?1??1???n?nn(4)

故原级数收敛.

7.用根值判别法判别下列级数的敛散性:

(1)

?5n????3n?1??n?1?n????n?1?3n?1???; (2)

??ln?n?1?1n?1??n;

2n?1(3) ;

(4)

?b????n?1?an??n??n,其中an→a(n→∞),an,b,a均为正数.

解:(1)

故原级数发散.

n??limnUn?lim5n5??1n??3n?13,

limnUn?lim(2)

故原级数收敛.

1ln?n?1?2?n???0?1,

1n?n?limnUn?lim??n??n???3n?1?(3)

故原级数收敛.

n?1?19,

(4)

bb?b?limn???lim?n??n??aa?an?n,

bb当ba时,ab>1,原级数发散;当b=a时,a=1,无法判定其敛散性.

8.判定下列级数是否收敛?若收敛,是绝对收敛还是条件收敛?

?1111??1?n?11????L?ln?n?1?; 234(1); (2)n?111111111???2??3??4?L53535353(3) ;

(4)

???1?n?1??n?12n!n2;

n(5)

???1?n?1?n?11n????R?;

(6)

1???1??11?1???L???23n?nn?1?.

高等数学课后习题答案第十二章

习1.写出下列级数的一般项:题十二1111????L357(1)(2);xxxxx2????L22?42?4?62?4?6?8;;a3a5a7a9????L579(3)31Un?2n?1;解:(1)Un?(2)xn2?2n?!
推荐度:
点击下载文档文档为doc格式
7odqm89b812nsft0iuth97tl37kv1k00rex
领取福利

微信扫码领取福利

微信扫码分享