习
1.写出下列级数的一般项:
题十二
1111????L357(1)
(2)
;
xxxxx2????L22?42?4?62?4?6?8;
;
a3a5a7a9????L579(3)31Un?2n?1; 解:(1)
Un?
(2)
xn2?2n?!!;
n?1 (3)
2.求下列级数的和:
?Un???1?a2n?12n?1;
(1)
??x?n?1??x?n??x?n?1?n?11;
(2)
??n?1?n?2?2n?1?n?;
111?2?3?L5(3)55;
un?1?x?n?1??x?n??x?n?1?解:(1)
111?????2??x?n?1??x?n??x?n??x?n?1???
11111????Sn??2?x?x?1??x?1??x?2??x?1??x?2??x?2??x?3?11??L???x?n?1??x?n??x?n??x?n?1???111??????x??????2x?1x?nx?n?1??从而
11limSn?n??2x?x?1?,故级数的和为2x?x?1? 因此
(2)因为
Un??n?2?n?1???n?1?n?
Sn??3?2???2?1???4?3???3?2???5?4???4?3??L??n?2?n?1???n?1?n??n?2?n?1?1?21??1?2n?2?n?1从而
所以n??limSn?1?2,即级数的和为1?2.
111Sn??2?L?n5551??1?n?1????5??5????11?51??1?n???1????4??5??(3)因为
从而
3.判定下列级数的敛散性:
limSn?n???114,即级数的和为4.
(1)
??n?1n?1?n?;
(2)
1111???L??L1?66?1111?16?5n?4??5n?1?;
;
n22223n?12?3?3?L???1??Ln3333(3)
1111??3?L?n?L555(4)5;
Sn??2?1???3?2??L??n?1?n?解:(1) 从而n???n?1?1,故级数发散.
limSn???1?1111111?Sn??1??????L???5?661111165n?45n?1?1?1???1??55n?1??(2)
11limSn?n??5,故原级数收敛,其和为5. 从而
2q??3的等比级数,且|q|<1,故级数收敛. (3)此级数为1Un?nlimUn?1?05(4)∵,而n??,故级数发散.
4.利用柯西审敛原理判别下列级数的敛散性:
(1)
??1?n?1?nn?1??; (2)
cosnx?2n; n?1?(3)
解:(1)当P为偶数时, 当P为奇数时,
因而,对于任何自然数P,都有
11??1?????3n?23n?3?. n?1?3n?1Un?1?Un?2?L?Un?p?11?n?1n,
?1?N????1???,则当n>N时,对任何自然数P恒有Un?1?Un?2?L?Un?p??成立,由柯西审敛原理ε>0,取
??1?n?1?n知,级数n?1?收敛.
(2)对于任意自然数P,都有
1??log2?????,当n>N时,对任意的自然数P都有Un?1?Un?2?L?Un?p??成立,由柯于是, ε>0(0<ε<1),N=
西审敛原理知,该级数收敛.
(3)取P=n,则
从而取数发散.
5.用比较审敛法判别下列级数的敛散性.
?0?112,则对任意的n∈N,都存在P=n所得Un?1?Un?2?L?Un?p??0,由柯西审敛原理知,原级
111??L??L????n?3n?5(1)4?65?71?21?31?n1???L??L2221?21?31?n(2)
πsinn?3(3)n?1?;
?;
(4)
n?1??12?n31n;
1?n1?an?1(5)
解:(1)∵
??a?0?;
(6)
??2n?1?1?.
Un?1?2nn?1而
(2)∵
??11?2?n?3??n?5?n
收敛,由比较审敛法知
?Un?1?n收敛.
Un?1?n1?n1??221?nn?nn
1?而n?1n发散,由比较审敛法知,原级数发散.
ππsinnn33lim?limπ??πn??n??1π3n3n(3)∵
sinπ?n而n?13?收敛,故
?sin3n?1?πn也收敛.
Un?(4)∵
12?n3??1n31?1n32
?而
n?1?1n32?收敛,故
n?12?n3收敛.
??1111Un????nnnna1?an?1n?11?aa(5)当a>1时,,而收敛,故
11limUn?lim??0n??22当a=1时,n??,级数发散.
1limUn?lim?1?0n??n??1?an当0 也收敛. 综上所述,当a>1时,原级数收敛,当0 2?1?ln2?1?1?1x??2x?11lim?ln2??2n?1x?0nnn?1n?1x(6)由知而发散,由比较审敛法知 lim1n??发散. 6.用比值判别法判别下列级数的敛散性: (1) n2?nn?13?; n!?n3?1; n?1(2) ; ?332333n???L??L23n1?22?23?2n?2(3) (1) 2n?n!?nn n?1?n2Un?n3解:(1) Un?1?n?1?23n1lim?limn?1?2??1n??Un??3n3n,, 由比值审敛法知,级数收敛. Un?1?n?1?!3n?1lim?limn?1?n??Un??3?1n!n3n?1?lim?n?1??n?1n??3?1??? (2) 所以原级数发散. Un?13n?1n?2nlim?lim?nn?1n??Un?????23n?1n?lim?3n2?n?1? n??(3) 所以原级数发散. 3?12Un?12n?1??n?1?!nnlim?lim?nn?1n??Un???2?n!?n?1n?n??lim2??n???n?1?12?2lim??1nn??e?1??1???n?nn(4) 故原级数收敛. 7.用根值判别法判别下列级数的敛散性: (1) ?5n????3n?1??n?1?n????n?1?3n?1???; (2) ??ln?n?1?1n?1??n; 2n?1(3) ; (4) ?b????n?1?an??n??n,其中an→a(n→∞),an,b,a均为正数. 解:(1) 故原级数发散. n??limnUn?lim5n5??1n??3n?13, limnUn?lim(2) 故原级数收敛. 1ln?n?1?2?n???0?1, 1n?n?limnUn?lim??n??n???3n?1?(3) 故原级数收敛. n?1?19, (4) bb?b?limn???lim?n??n??aa?an?n, bb当ba时,ab>1,原级数发散;当b=a时,a=1,无法判定其敛散性. 8.判定下列级数是否收敛?若收敛,是绝对收敛还是条件收敛? ?1111??1?n?11????L?ln?n?1?; 234(1); (2)n?111111111???2??3??4?L53535353(3) ; (4) ???1?n?1??n?12n!n2; n(5) ???1?n?1?n?11n????R?; (6) 1???1??11?1???L???23n?nn?1?.