∴AE⊥BC ∴AD⊥BC
19.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.
求证:∠OAB=∠OBA
证明:
∵OM平分∠POQ ∴∠POM=∠QOM ∵MA⊥OP,MB⊥OQ ∴∠MAO=∠MBO=90 ∵OM=OM
∴△AOM≌△BOM (AAS) ∴OA=OB ∵ON=ON
∴△AON≌△BON (SAS)
∴∠OAB=∠OBA,∠ONA=∠ONB ∵∠ONA+∠ONB=180 ∴∠ONA=∠ONB=90 ∴OM⊥AB 20.(5分)如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.
做BEPC的延长线,与AP相交于F点,
E∵PA//BC
∴D∠PAB+∠CBA=180°,又∵,AE,BE均为∠PAB和∠CBA的角平分线
∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB为直角三角形 BA在三角形ABF中,AE⊥BF,且AE为∠FAB的角平分线
∴三角形FAB为等腰三角形,AB=AF,BE=EF 在三角形DEF与三角形BEC中,
∠EBC=∠DFE,且BE=EF,∠DEF=∠CEB,
∴三角形DEF与三角形BEC为全等三角形,∴DF=BC ∴AB=AF=AD+DF=AD+BC
21.如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B
延长ACA到E 使AE=AC 连接 ED
AB=AC+CD ∵
CD=CE ∴
C可得∠B=∠E
BD△CDE为等腰 ∠ACB=2∠B 22.(6分)如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M. (1)求证:MB=MD,ME=MF
11 / 23
(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.
(1)连接BE,DF.
∵DE⊥AC于E,BF⊥AC于F, ∴∠DEC=∠BFA=90°,DE∥BF, 在Rt△DEC和Rt△BFA中, ∵AF=CE,AB=CD,
∴Rt△DEC≌Rt△BFA(HL), ∴DE=BF.
∴四边形BEDF是平行四边形. ∴MB=MD,ME=MF; (2)连接BE,DF.
∵DE⊥AC于E,BF⊥AC于F, ∴∠DEC=∠BFA=90°,DE∥BF, 在Rt△DEC和Rt△BFA中, ∵AF=CE,AB=CD,
∴Rt△DEC≌Rt△BFA(HL), ∴DE=BF.
∴四边形BEDF是平行四边形. ∴MB=MD,ME=MF.
23.已知:如图,DC∥AB,且DC=AE,E为AB的中点, (1)求证:△AED≌△EBC.
(2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出结果,不要求证明): A
D O C证明:
EB12 / 23
∵DC∥AB
∴∠CDE=∠AED ∵DE=DE,DC=AE ∴△AED≌△EDC ∵E为AB中点 ∴AE=BE ∴BE=DC ∵DC∥AB
∴∠DCE=∠BEC ∵CE=CE
∴△EBC≌△EDC ∴△AED≌△EBC 24.(7分)如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.
求证:BD=2CE. 证
DCAF
E明:
∵∠CEB=∠CAB=90° ∴ABCE四点共元
B∵∠AB E=∠CB E ∴AE=CE ∴∠ECA=∠EAC
取线段BD的中点G,连接AG,则:AG=BG=DG ∴∠GAB=∠ABG
而:∠ECA=∠GBA (同弧上的圆周角相等) ∴∠ECA=∠EAC=∠GBA=∠GAB 而:AC=AB ∴△AEC≌△AGB ∴EC=BG=DG ∴BE=2CE
25、如图:DF=CE,AD=BC,∠D=∠C。求证:△AED≌△BFC。
13 / 23
DEFCAB
证明:∵DF=CE,∴DF-EF=CE-EF,即DE=CF,在△AED和△BFC中,∵ AD=BC, ∠D=∠C ,DE=CF ∴△AED≌△BFC(SAS)
26、(10分)如图:AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。
求证:AM是△ABC的中线。
AFBEMC
证明: ∵BE‖CF
∴∠E=∠CFM,∠EBM=∠FCM ∵BE=CF ∴△BEM≌△CFM ∴BM=CM
∴AM是△ABC的中线.
27、(10分)如图:在△ABC中,BA=BC,D是AC的中点。求证:BD⊥AC。
ADBC
∵△ABD和△BCD的三条边都相等 ∴△ABD=△BCD ∴∠ADB=∠CD
14 / 23
∴∠ADB=∠CDB=90°∴BD⊥AC
28、(10分)AB=AC,DB=DC,F是AD的延长线上的一点。求证:BF=CF
ADBCF
在△ABD与△ACD中 AB=AC BD=DC AD=AD
∴△ABD≌△ACD ∴∠ADB=∠ADC ∴∠BDF=∠FDC 在△BDF与△FDC中 BD=DC ∠BDF=∠FDC DF=DF
∴△FBD≌△FCD ∴BF=FC
29、(12分)如图:AB=CD,AE=DF,CE=FB。求证:AF=DE。
AFBECD
∵AB=DC AE=DF, CE=FB
15 / 23