五年级奥数题大全及答案
【篇一:五年级奥数题精选及答案】
姓名:学校: 班级 分数:
1、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。那么有多少人两个小组都不参加? 2、某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文成绩均得满分的有3人,这两科都没有得满分的有29人。那么语文成绩得满分的有多少人?
3、50名同学面向老师站成一行。老师先让大家从左至右按1,2,3,……,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。问:现在面向老师的同学还有多少名?
4、在游艺会上,有100名同学抽到了标签分别为1至100的奖券。按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔。那么游艺会为该项活动准备的奖品铅笔共有多少支?
5、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断。问绳子共被剪成了多少段? 答案:
1,因为10人2组都参加,所以只参加数学的5人,只参加航模的8人,加上那10人就是23人,40-23=17,2个小组都不参加的17人 2,同理,数学满分10人,2科都满分的3人,于是只是数学满分的7人,45-7-29=9,这个就是语文满分的人(如果说只是语文满分的则需要减去3)
例1 有4堆外表上一样的球,每堆4个。已知其中三堆是正品、一堆是次品,正品球每个重10克,次品球每个重11克,请你用天平只称一次,把是次品的那堆找出来。
解 :依次从第一、二、三、四堆球中,各取1、2、3、4个球,这10个球一起放到天平上去称,总重量比100克多几克,第几堆就是次品球。
例2 有27个外表上一样的球,其中只有一个是次品,重量比正品轻,请你用天平只称三次(不用砝码),把次品球找出来。
解 :第一次:把27个球分为三堆,每堆9个,取其中两堆分别放在天平的两个盘上。若天平不平衡,可找到较轻的一堆;若天平平衡,则剩下来称的一堆必定较轻,次品必在较轻的一堆中。
第二次:把第一次判定为较轻的一堆又分成三堆,每堆3个球,按上法称其中两堆,又可找出次品在其中较轻的那一堆。
第三次:从第二次找出的较轻的一堆3个球中取出2个称一次,若天平不平衡,则较轻的就是次品,若天平平衡,则剩下一个未称的就是次品。
例3 把10个外表上一样的球,其中只有一个是次品,请你用天平只称三次,把次品找出来。
解:把10个球分成3个、3个、3个、1个四组,将四组球及其重量分别用a、
b、c、d表示。把a、b两组分别放在天平的两个盘上去称,则 (1)若a=b,则a、b中都是正品,再称b、c。如b=c,显然d中的那个球是次品;如b>c,则次品在c中且次品比正品轻,再在c中取出2个球来称,便可得出结论。如b<c,仿照b>c的情况也可得出结论。
(2)若a>b,则c、d中都是正品,再称b、c,则有b=c,或b<c(b>c不可能,为什么?)如b=c,则次品在a中且次品比正品重,再在a中取出2个球来称,便可得出结论;如b<c,仿前也可得出结论。
(3)若a<b,类似于a>b的情况,可分析得出结论。
练习 有12个外表上一样的球,其中只有一个是次品,用天平只称三次,你能找出次品吗? 奥赛专题 -- 鸡兔同笼问题
[专题介绍]鸡兔同笼问题是指在应用题中给出了鸡和兔子的总头数和总腿数,求鸡和兔子各有多少只的一类问题。鸡兔同笼问题在解答过程中用到假设的思路,可以假设都是兔子,这样总腿数就比实际腿数要多,多出来的腿数就是把鸡当兔子多算的,因此再除以一只鸡比一只兔子少的腿数就可以求得鸡有多少只。也可以假设成都是鸡,这样就可以求得兔有多少只。
[经典例题]例1 鸡兔同笼,头共46,足共128,鸡兔各几只? 解:①鸡有多少只? =28(只)
②免有多少只?
46-28=18(只)
答:鸡有28只,免有18只。
[总结]:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是: 当然,也可以先假设全是鸡。
例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?
[分析]: 这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢? 100-20=80(只)。
答:鸡与兔分别有80只和20只。
例3 红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?
[分析1] 我们设想,如果条件中三个班人数同样多,那么,要求每班有多少人就很容易了.由此得到启示,是否可以通过假设三个班人数同样多来分析求解。 结合下图可以想,假设二班、三班人数和一班人数相同,以一班为标准,则二班人数要比实际人数少5人.三班人数要比实际人数多7-5=2(人).那么,请你算一算,假设二班、三班人数和一班人数同样多,三个班总人数应该是多少? 解法1: =44(人)
二班:44+5=49(人) 三班:49-7=42(人)
答:三年级一班、 二班、三班分别有44人、 49人和 42人。
[分析2] 假设一、三班人数和二班人数同样多,那么,一班人数比实际要多5人,而三班要比实际人数多7人.这时的总人数又该是多少?
49-5=44(人),49-7=42(人)
答:三年级一班、二班、三班分别有44人、49人和42人。
例4 刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条? [分析] 我们分步来考虑:
②假设后的总人数比实际人数多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假设成坐6人。 答:有9条小船,1条大船。
例5 有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?
解:①假设蜘蛛也是6条腿,三种动物共有多少条腿? ②有蜘蛛多少只?
③蜻蜒、蝉共有多少只? 18-5=13(只) ⑤蜻蜒多少只? 答:蜻蜒有7只.
参考资料:小数专业网 过桥问题(1)
1. 一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟? 分析:这道题求的是通过时间。根据数量关系式,我们知道要想求通过时间,就要知道路程和速度。路程是用桥长加上车长。火车的速度是已知条件。 总路程: (米) 通过时间: (分钟)
答:这列火车通过长江大桥需要17.1分钟。
【篇二:小学五年级奥数题大全及答案】
的巧算
2、数的整除性 3、质数与合数 4、约数与倍数 5、带余数除法 6、中国剩余定理 7、奇数与偶数 8、周期性问题 9、图形的计数 10、图形的切拼 11、图形与面积 12、观察与归纳 13、数列的求和
14、数列的分组 15、相遇问题 16、追及问题 17、变换和操作 18、逻辑推理 19、逆推法 20、分数问题 年级班姓名得分 一、填空题
1、计算 1.135+3.346+5.557+7.768+9.979=_____. 2、计算 1.996+19.97+199.8=_____.
3、计算 9.8+99.8+999.8+9999.8+99999.8=_____.
4、计算6.11+9.22+8.33+7.44+5.55+4.56+3.67+2.78 +1.89=_____. 5、计算
1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=_____. 6、计算 2.89?4.68+4.68?6.11+4.68=_____.
7、计算 17.48?37-17.48?19+17.48?82=_____. 8、计算 1.25?0.32?2.5=_____. 9、计算 75?4.7+15.9?25=_____.
10、计算 28.67?67+32?286.7+573.4?0.05=_____. 二、解答题
11、计算 172.4?6.2+2724?0.38 12、计算 0.00?0181 ?0.00?011
963个0 1028个0 13、计算
12.34+23.45+34.56+45.67+56.78+67.89+78.91+89.12+91.23 14、下面有两个小数:
a=0.00?0105b=0.00?019 1994个0 1996个0 求a+b,a-b,a?b,a?b. 年级班姓名得分 一、真空题
1、计算 4.75-9.64+8.25-1.36=_____.
2、计算 3.17-2.74+4.7+5.29-0.26+6.3=_____. 3、计算 (5.25+0.125+5.75)?8=_____.