好文档 - 专业文书写作范文服务资料分享网站

(1)-数据包络分析法(DEA)概述

天下 分享 时间: 加入收藏 我要投稿 点赞

(1) 数据包络分析法(DEA)概述

数据包络分析 (Data Envelopment Analysis,简称DEA)方法是运用数学工具评价经济系统生产前沿面有效性的非参数方法,它适应用于多投入多产出的多目标决策单元的绩效评价。这种方法以相对效率为基础,根据多指标投入与多指标产出对相同类型的决策单元进行相对有效性评价。应用该方法进行绩效评价的另一个特点是,它不需要以参数形式规定生产前沿函数,并且允许生产前沿函数可以因为单位的不同而不同,不需要弄清楚各个评价决策单元的输入与输出之间的关联方式,只需要最终用极值的方法,以相对效益这个变量作为总体上的衡量标准, 以决策单元(DMU)各输入输出的权重向量为变量,从最有利于决策的角度进行评价,从而避免了人为因素确定各指标的权重而使得研究结果的客观性收到影响。这种方法采用数学规划模型,对所有决策单元的输出都“一视同仁”。这些输入输出的价值设定与虚拟系数有关,有利于找出那些决策单元相对效益偏低的原因。该方法以经验数据为基础,逻辑上合理,故能够衡量个决策单元由一定量大投入产生预期的输出的能力,并且能够计算在非DEA有效的决策单元中,投入没有发挥作用的程度。最为重要的是应用该方法还有可能进一步估计某个决策单元达到相对有效时,其产出应该增加多少,输入可以减少多少等。

1978年由著名的运筹学家查恩斯(A.Charnes),库伯(W.W.Cooper)和罗兹(E.Rhodes)首先提出数据包络分析(Data Envelopment Analysis,简称DEA)的方法,DEA有效性的评价是对已

1 / 13

有决策单元绩效的比较评价,属于相对评价,它常常被用来评价部门间的相对有效性(又称之为DEA有效)。他们的第一个数学模型被命名为CCR模型,又称为

模型。从生产函数角度看,这一模型

是用来研究具有多项输入、特别是具有多项输出的“生产部门”时衡量其“规模有效”和“技术有效”较为方便而且是卓有成效的一种方法和手段。自从该方法提出以来,就广泛应用于各个行业的有效性评价上。此后,得到不断的完善,并且在实践中的应用也越来越广泛。例如1984年 R.D.Banker, A.Charnes和W.W.Cooper给出了一个被称为BCC的模型,又称之为BC2模型。 另外,于1985年Charnes, Cooper和 B.Golany, L.Seiford, J.Stutz给出了另一个模型,称为CCGSS模型,

又称之为C2GS2模型,这两个模型是用来研究生产部门之间的“技术有效”相对效率。下面将介绍这两个优化模型。 ( 2 ) 数据包络模型(又称为DEA模型)描述

数据包络分析(DEA)由美国著名运筹学家A. Charnes等人在1978年以相对效率概念为基础发展起来的一种新的绩效评价方法。这种方法是以决策单元(Decision Making Unit,简称DMU)的投入、产出指标的权重系数为变量,借助于数学规划模型将决策单元投影到DEA生产前沿面上,通过比较决策单元偏离DEA生产前沿面的程度来对被评价决策单元的相对有效性进行综合绩效评价。其基本思路是: 通过对投入产出数据的综合分析,得出每个DMU综合相对效率的数量指标,确定各DMU是否为DEA有效。下面我们先描述DEA模型。

2 / 13

假设有n个待评价的对象 (又称之为n个决策单元DMU ),每个决策单元都有m种类型的投入及s种类型的产出,它们所对应的权重向量分别记为:

。这n

个决策单元中第j个的投入和产出量用向量分别记作:

,,

为第j

其中:为第j个决策单元对第i种类型输入的投入总量,个决策单元对第r种类型输出的产出总量,且种输入指标的权重系数,

;为第i

为第r种产出指标的权重系数,且,

。则每个决策单元DMU投入与产出比的相对效率评价指数如下:

通过适当选取权重向量V和U的值,使对每个j,均满足现对某第

个决策单元进行绩效评价,则以第

个决策单元的效率

指数为目标,以所有的待评的决策单元的效率指数为约束,第决策单元简记为

,故可以得到一般的DEA优化模型如下:

3 / 13

(1)-数据包络分析法(DEA)概述

(1)数据包络分析法(DEA)概述数据包络分析(DataEnvelopmentAnalysis,简称DEA)方法是运用数学工具评价经济系统生产前沿面有效性的非参数方法,它适应用于多投入多产出的多目标决策单元的绩效评价。这种方法以相对效率为基础,根据多指标投入与多指标产出对相同类型的决策单元进行相对有效性评价。应用该方法进行绩效评价的另一个特点是,它不需要以参数形式规定
推荐度:
点击下载文档文档为doc格式
7nvan3svzy5nrap1rg1l036aw5tvxo00xpc
领取福利

微信扫码领取福利

微信扫码分享