专题升级训练26 解答题专项训练(数列)
1.(2020·云南昆明质检,17)已知等差数列{an}的前n项和为Sn,a2=3,S10=100. (1)求数列{an}的通项公式;
?1?n(2)设bn=??an,求数列{bn}的前n项和Tn.
?3?
n2.(2020·山东济南二模,18)已知等比数列{an}的前n项和为Sn,且满足Sn=3+k, (1)求k的值及数列{an}的通项公式;
,求数列{bn}的前n项和Tn.
2
3.(2020·河南豫东豫北十校段测,18)已知数列{an}的前n项和为Sn,a1=1,Sn=nan-n(n-1)(n∈N*).
(1)求数列{an}的通项公式;
2
(2)设bn=,求数列{bn}的前n项和Tn.
(2)若数列{bn}满足
an+1
=(4?k)anbnanan+1
4.(2020·河北石家庄二模,17)已知Sn是等比数列{an}的前n项和,S4,S10,S7成等差数列.
(1)求证a3,a9,a6成等差数列;
3
(2)若a1=1,求数列{an}的前n项的积.
5.(2020·陕西西安三质检,19)已知等差数列{an}满足a2=7,a5+a7=26,{an}的前n项和为Sn.
(1)求an及Sn;
1*
(2)令bn=2(n∈N),求数列{bn}的前n项和Tn.
an-1
6.(2020·广西南宁三测,20)已知数列{an}满足a1=2,nan+1=(n+1)an+2n(n+1).
(1)证明:数列??为等差数列,并求数列{an}的通项;
?n??an?
}的前n项和Tn.
2
7.(2020·广东汕头质检,19)已知等差数列{an}的前n项和为Sn,首项为1的等比数列{bn}的公比为q,S2=a3=b3,且a1,a3,b4成等比数列.
(1)求{an}和{bn}的通项公式;
111*
(2)设cn=k+an+log3bn(k∈N),若,,(t≥3)成等差数列,求k和t的值.
(2)设cn=
an,求数列{cn·3
n-1
c1c2ct2
8.(2020·北京石景山统测,20)若数列{An}满足An+1=An,则称数列{An}为“平方递推数
2
列”.已知数列{an}中,a1=2,点(an,an+1)在函数f(x)=2x+2x的图象上,其中n为正整
数.
(1)证明数列{2an+1}是“平方递推数列”,且数列{lg(2an+1)}为等比数列;
(2)设(1)中“平方递推数列”的前n项之积为Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求数列{an}的通项及Tn关于n的表达式;
(3)记bn?log2an?1Tn,求数列{bn}的前n项和Sn,并求使Sn>2 012的n的最小值.
参考答案
a1+d=3,??
1.解:(1)设{an}的公差为d,有?10×9
10ad=100,1+?2?
解得a1=1,d=2,
∴an=a1+(n-1)d=2n-1.
1?1?2?1?3?1?n(2)Tn=+3×??+5×??+…+(2n-1)×??,
3?3??3??3?1?1??1??1??1?Tn=??2+3×??3+5×??4+…+(2n-1)×??n+1, 3?3??3??3??3?相减,得 2122n+2?1?n?1??1??1??1?Tn=+2×??2+2×??3+…+2×??n-(2n-1)×??n+1=-×??. 3333?3??3??3??3??3?
n+1
∴Tn=1-n. 3
nn-1n-1
2.解:(1)当n≥2时,由an=Sn-Sn-1=3+k-3-k=2×3,a1=S1=3+k,所以k=-1.
an+1n3nab(2)由=(4+k)nn,可得bn=,b=×n, nn-1
22×323
n?3?123
Tn=?+2+3+…+n?,
3?2?333
n?13?123
Tn=?2+3+4+…+n+1?,
3?32?333
1n?23?111
所以Tn=?+2+3+…+n-n+1?,
33?32?333
1n?9?1
Tn=?-n-n+1?.
4?22×33?
3.解:(1)∵Sn=nan-n(n-1),当n≥2时,Sn-1=(n-1)an-1-(n-1)(n-2), ∴an=Sn-Sn-1=nan-n(n-1)-(n-1)an-1+(n-1)(n-2). ∴an-an-1=2.
∴数列{an}是首项a1=1,公差d=2的等差数列.
*
故an=1+(n-1)×2=2n-1,n∈N.
2211
(2)由(1)知bn===-,
anan+1(2n-1)(2n+1)2n-12n+1
?1??11??11??1-1?=1-1=
∴Tn=b1+b2+…+bn=?1-?+?-?+?-?+…+??2n+1?3??35??57??2n-12n+1?2n. 2n+1
4.解:(1)当q=1时,2S10≠S4+S7, ∴q≠1.
1047
2a1(1-q)a1(1-q)a1(1-q)
由2S10=S4+S7,得=+. 1-q1-q1-q1047
∵a1≠0,q≠1,∴2q=q+q.
825
则2a1q=a1q+a1q. ∴2a9=a3+a6.
∴a3,a9,a6成等差数列.
3
(2)依题意设数列{an}的前n项的积为Tn,
Tn=a13·a23·a33…an3
3323n-133323n-1=1·q·(q)·…·(q)=q·(q)·…·(q)
=(q)=(q)1047
又由(1)得2q=q+q,
31+2+3+…+(n-1)
3n(n?1)2.
16333
∴2q-q-1=0,解得q=1(舍),q=-.
2∴Tn=???1???2?n(n?1)2.
5.解:(1)设等差数列{an}的首项为a1,公差为d. 由于a3=7,a5+a7=26,
所以a1+2d=7,2a1+10d=26. 解得a1=3,d=2.
n(a1+an)
由于an=a1+(n-1)d,Sn=,
2
所以an=2n+1,Sn=n(n+2).
2
(2)因为an=2n+1,所以an-1=4n(n+1).
1?11?1
因此bn==?-?,
4n(n+1)4?nn+1?
故Tn=b1+b2+…+bn
11?1?111
=?1-+-+…+-
223nn+1?4??1?1?=?1-
n+1?4??=
n,
4(n+1)
n所以数列{bn}的前n项和Tn=(n+1).
4
6.解:(1)∵nan+1=(n+1)an+2n(n+1),
an+1an-=2. n+1n?an?
∴数列??为等差数列.
?n?
an不妨设bn=,则bn+1-bn=2,
n从而有b2-b1=2,b3-b2=2,…,bn-bn-1=2,累加得bn-b1=2(n-1),即bn=2n.
2
∴an=2n.
an(2)cn==n,
∴
2
Tn=1×30+2×31+3×32+…+n×3n-1,
23n3Tn=1×3+2×3+3×3+…+n×3, 两式相减,得
23n-1n1+3+3+3+…+3-n×31?n1?nTn==+?-?·3,
-24?24?
1?n1?n∴Tn=+?-?·3.
4?24?
7.解:(1)设等差数列{an}的公差为d, 由S2=a3,得2a1+d=a1+2d,故有a1=d.
22
由a3=b3,得a1+2d=b1q,故有3a1=q.①