.
6、解:在△ABD和△ACE中,
∵AB=AC,∠DAB=∠CAE=90°AD=AE, ∴△ABD≌△ACE(SAS), ∴∠E=∠ADB.
∵∠ADB=180°-∠BDC=180°-124°=56°, ∴∠E=56°. 7、解:OE=OF.
证明:正方形ABCD的对角线AC,BD交于点O, ∴OA=OB,∠OAB=∠OBE=45°,AC⊥BD. ∵∠AOF+∠FOB=∠EOB+∠FOB=90°, ∴∠AOF=∠EOB. 在△AOF和△BOE中
∠OAB=∠OBE,OA=OB,∠AOF=∠EOB, ∴△AOF≌△BOE(ASA). ∴OE=OF.
.
初二奥数题及答案
.6、解:在△ABD和△ACE中,∵AB=AC,∠DAB=∠CAE=90°AD=AE,∴△ABD≌△ACE(SAS),∴∠E=∠ADB.∵∠ADB=180°-∠BDC=180°-124°=56°,∴∠E=56°.7、解:OE=OF.证明:正方形ABCD的对角线AC,BD交于点O,∴OA=OB,∠OAB=
推荐度:
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
点击下载文档文档为doc格式