则定义域为?x|x?0或x???1?? 2?⒊在半径为R的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数. 解:
设梯形ABCD即为题中要求的梯形,设高为h,即OE=h,下底CD=2R (其中,AB为梯形上底,下底CD与半园直径重合,O为园心,E为AB中点)
直角三角形AOE中,利用勾股定理得
AE?OA2?OE2?R2?h2
则上底AB=2AE?2R2?h2 故S?h2?2R?2R2?h2??h?R?R2?h2? ⒋求limsin3x. (第4,5,6,7,9的极限还可用洛贝塔法则做)
x?0sin2xsin3xsin3解:limsin3x?3xxx?0sin2x?lim3xx?0sin2x?lim3x?3=1?3?3
2x?2xx?0sin2x21222x⒌求limx2?1x??1sin(x?1).
解:limx2?1x??1sin(x?1)?lim(x?1)(x?1)x??1sin(x?1)?limx?1x??1sin(x?1)??1?11??2 x?1⒍求limtan3x.
x?0x解:limtan3xx?0x?limsin3x1sin3x11x?0xcos3x?limx?03x?cos3x?3?1?1?3?3
1?x2⒎求lim?1x?0sinx.
解:lim1?x2?1x?0sinxlim(1?x2?1)(1?x2?1)x?0(1?x2?1)sinx?limx2?x?0(1?x2?1)sinx ?limxx?0?0(1?x2?1)sinx?1?1??1?0
x 6
⒏求lim(x??x?1x). x?3111x?x?11?解:lim(x?1(1?)[(1?)]?1x??x?3)x?lim(xxxx??1?3)?limx??3?lim?xe?4 xx??1x?e3?ex(1?x)[(1?x)3]33⒐求limx2?6x?8x?4x2?5x?4.
解:limx2?6x?8?x?4??x?2?x?4x2?5x?4?limx?4?x?4??x?1??limx?2x?4x?1?4?24?1?23
⒑设函数
?(x?2)2,x?1f(x)???x,?1?x?1
??x?1,x??1讨论f(x)的连续性,并写出其连续区间. 解:分别对分段点x??1,x?1处讨论连续性 (1)
xlim??1?f?x??xlim??1?x??1 xlim??1?f?x??xlim??1??x?1???1?1?0所以xlim??1?f?x??xlim??1?f?x?,即f?x?在x??1处不连续 (2)
22xlim?1?f?x??limx?1??x?2???1?2??1xlim?1?f?x??xlim?1?x?1
f?1??1所以limx?1?f?x??limx?1?f?x??f?1?即f?x?在x?1处连续 由(1)(2)得f?x?在除点x??1外均连续 故f?x?的连续区间为???,?1???1,???
7