16÷32%=50 38.
解:1/2*1/3=1/6
所以三角形ABC的面积是三角形AED面积的6倍。
39.下面9个图中,大正方形的面积分别相等,小正方形的面积分别相等。问:哪几个图中的阴影部分与图(1)阴影部分面积相等?
解:(2) (4) (7)(8) (9)
40.观察下列各串数的规律,在括号中填入适当的数 2,5,11,23,47,( ),…… 解:括号内填95
规律:数列里地每一项都等于它前面一项的2倍减1
41.在下面的数表中,上、下两行都是等差数列。上、下对应的两个数字中,大数减小数的差最小是几? 解:1000-1=999 997-995=992
每次减少7,999/7=142……5 所以下面减上面最小是5 1333-1=13321332/7=190……2 所以上面减下面最小是2 因此这个差最小是2。
42.如果四位数6□□8能被73整除,那么商是多少? 解:估计这个商的十位应该是8,看个位可以知道是6 因此这个商是86。
43.求各位数字都是 7,并能被63整除的最小自然数。 解:63=7*9
所以至少要9个7才行(因为各位数字之和必须是9的倍数) 44. 1×2×3×…×15能否被 9009整除? 解:能。
将9009分解质因数 9009=3*3*7*11*13
45.能否用1, 2, 3, 4, 5, 6六个数码组成一个没有重复数字,且能被11整除的六位数?为什么? 解:不能。因为1+2+3+4+5+6=21,如果能组成被11整除的六位数,那么奇数位的数字和与偶数位的数字和一个为16,一个为5,而最小的三个数字之和1+2+3=6>5,所以不可能组成。 46.有一个自然数,它的最小的两个约数之和是4,最大的两个约数之和是100,求这个自然数。 解:最小的两个约数是1和3,最大的两个约数一个是这个自然数本身,另一个是这个自然数除以3的商。最大的约数与第二大
47.100以内约数个数最多的自然数有五个,它们分别是几?
解:如果恰有一个质因数,那么约数最多的是26=64,有7个约数;
如果恰有两个不同质因数,那么约数最多的是23×32=72和25×3=96,各有12个约数;
如果恰有三个不同质因数,那么约数最多的是22×3×5=60,22×3×7=84和2×32×5=90,各有12个约数。
所以100以内约数最多的自然数是60,72,84,90和96。
48.写出三个小于20的自然数,使它们的最大公约数是1,但两两均不互质。 解:6,10,15
49.有336个苹果、 252个桔子、 210个梨,用这些果品最多可分成多少份同样的礼物?在每份礼物中,三样水果各多少?
解:42份;每份有苹果8个,桔子6个,梨5个。 50.三个连续自然数的最小公倍数是168,求这三个数。
解:6,7,8。提示:相邻两个自然数必互质,其最小公倍数就等于这两个数的乘积。而相邻三个自然数,若其中只有一个偶数,则其最小公倍数等于这三个数的乘积;若其中有两个偶数,则其最小公倍数等于这三个数乘积的一半。
51.一副扑克牌共54张,最上面的一张是红桃K。如果每次把最上面的12张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃K才会又出现在最上面?
解:因为[54,12]=108,所以每移动108张牌,又回到原来的状况。又因为每次移动12张牌,所以至少移动108÷12=9(次)。
52.爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。”你知道爷爷和小明现在的年龄吗?
解:爷爷70岁,小明10岁。提示:爷爷和小明的年龄差是6,5,4,3,2的公倍数,又考虑到年龄的实际情况,取公倍数中最小的。(60岁)
53.某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?并将它们写出来。 解:11,13,17,23,37,47。
54.在放暑假的8月份,小明有五天是在姥姥家过的。这五天的日期除一天是合数外,其它四天的日期都是质数。这四个质数分别是这个合数减去1,这个合数加上1,这个合数乘上2减去1,这个合数乘上2加上1。问:小明是哪几天在姥姥家住的?
解:设这个合数为a,则四个质数分别为(a-1),(a+1),(2a-1),(2a+1)。因为(a-1)与(a+1)是相差2的质数,在1~31中有五组:3,5;5,7;11,13;17,19;21,31。经试算,只有当a=6时,满足题意,所以这五天是8月5,6,7,11,13日。
55.有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数。求这两个整数。
解:3,74;18,37。
提示:三个数字相同的三位数必有因数111。因为111=3×37,所以这两个整数中有一个是37的倍数(只能是37或74),另一个是3的倍数。
56.在一根100厘米长的木棍上,从左至右每隔6厘米染一个红点,同时从右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开。问:长度是1厘米的短木棍有多少根?
解:因为100能被5整除,所以可以看做都是自左向右染色。因为6与5的最小公倍数是30,即在30厘米处同时染上红点,所以染色以30厘米为周期循环出现。一个周期的情况如下图所示:
由上图知道,一个周期内有2根1厘米的木棍。所以三个周期即90厘米有6根,最后10厘米有1根,共7根。
57.某种商品按定价卖出可得利润960元,若按定价的80%出售,则亏损832元。问:商品的购入价是多少元?
解:8000元。按两种价格出售的差额为960+832=1792(元),这个差额是按定价出售收入的20%,故按定价出售的收入为1792÷20%=8960(元),其中含利润960元,所以购入价为8000元。 58.甲桶的水比乙桶多20%,丙桶的水比甲桶少20%。乙、丙两桶哪桶水多? 解:乙桶多。
59.学校数学竞赛出了A,B,C三道题,至少做对一道的有25人,其中做对A题的有10人,做对B题的有13人,做对C题的有15人。如果二道题都做对的只有1人,那么只做对两道题和只做对一道题的各有多少人?
解:只做对两道题的人数为(10+13+15) -25 -2×1=11(人), 只做对一道题的人数为25-11-1=13(人)。
60.学校举行棋类比赛,设象棋、围棋和军棋三项,每人最多参加两项。根据报名的人数,学校决定对象棋的前六名、围棋的前四名和军棋的前三名发放奖品。问:最多有几人获奖?最少有几人获奖? 解:共有13人次获奖,故最多有13人获奖。又每人最多参加两项,即最多获两项奖,因此最少有7人获奖。
61.在前1000个自然数中,既不是平方数也不是立方数的自然数有多少个?
解:因为312<1000<322,103=1000,所以在前1000个自然数中有31个平方数,10个立方数,同时还有3个六次方数(16,26,36)。所求自然数共有 1000-(31+10)+3=962(个)。 62.用数字0,1,2,3,4可以组成多少个不同的三位数(数字允许重复)? 解:4*5*5=100个
63.要从五年级六个班中评选出学习、体育、卫生先进集体各一个,有多少种不同的评选结果? 解:6*6*6=216种
64.已知15120=24×33×5×7,问:15120共有多少个不同的约数?
解: 15120的约数都可以表示成 2a×3b×5c×7d的形式,其中a=0,1,2,3,4,b=0,1,2,3,c=0,1,d=0,1,即a,b,c,d的可能取值分别有5, 4, 2, 2种,所以共有约数5×4×2×2=80(个)。
65.大林和小林共有小人书不超过50本,他们各自有小人书的数目有多少种可能的情况?
解:他们一共可能有0~50本书,如果他们共有n本书,则大林可能有书0~n本,也就是说这n本书在两人之间的分配情况共有(n+1)种。所以不超过 50本书的所有可能的分配情况共有1+2+3…+51=1326(种)。
66.在右图中,从A点沿线段走最短路线到B点,每次走一步或两步,共有多少种不同走法?(注:路线相同步骤不同,认为是不同走法。)
解:80种。提示:从A到B共有10条不同的路线,每条路线长5个线段。每次走一个或两个线段,每条路线有8种走法,所以不同走法共有 8×10=80(种)。
67.有五本不同的书,分别借给3名同学,每人借一本,有多少种不同的借法? 解:5*4*3=60种
68.有三本不同的书被5名同学借走,每人最多借一本,有多少种不同的借法? 解:5*4*3=60种
69.恰有两位数字相同的三位数共有多少个?
解:在900个三位数中,三位数各不相同的有9×9×8=648(个),三位数全相同的有9个,恰有两位数相同的有900—648—9=243(个)。
70.从1,3,5中任取两个数字,从2,4,6中任取两个数字,共可组成多少个没有重复数字的四位数? 解:三个奇数取两个有3种方法,三个偶数取两个也有3种方法。共有 3×3×4!=216(个)。 71.左下图中有多少个锐角? 解:C(11,2)=55个
72. 10个人围成一圈,从中选出两个不相邻的人,共有多少种不同选法? 解:c(10,2)-10=35种
73.一牧场上的青草每天都匀速生长。这片青草可供27头牛吃6周,或供23头牛吃9周。那么可供21头牛吃几周?
解:将1头牛1周吃的草看做1份,则27头牛6周吃162份,23头牛9周吃207份,这说明3周时间牧场长草207-162=45(份),即每周长草15份,牧场原有草162-15×6=72(份)。21头牛中的15头牛吃新长出的草,剩下的6头牛吃原有的草,吃完需72÷6=12(周)。
74.有一水池,池底有泉水不断涌出。要想把水池的水抽干, 10台抽水机需抽 8时,8台抽水机需抽12时。如果用6台抽水机,那么需抽多少小时?
解:将1台抽水机1时抽的水当做1份。泉水每时涌出量为 (8×12-10×8)÷(12-8)=4(份)。
水池原有水(10-4)×8=48(份),6台抽水机需抽48÷(6-4)=24(时)。 75.规定a*b=(b+a)×b,求(2*3)*5。 解:2*3=(3+2)*3=15 15*5=(15+5)*5=100
76.1!+2!+3!+…+99!的个位数字是多少? 解:1!+2!+3!+4!=1+2+6+24=33 从5!开始,以后每一项的个位数字都是0 所以1!+2!+3!+…+99!的个位数字是3。
77(1).有一批四种颜色的小旗,任意取出三面排成一行,表示各种信号。在200个信号中至少有多少个信号完全相同? 解:4*4*4=64 200÷64=3……8
所以至少有4个信号完全相同。
77.(2)在今年入学的一年级新生中有 370多人是在同一年出生的。试说明:他们中至少有2个人是在同一天出生的。
解:因为一年最多有366天,看做366个抽屉
因为370>366,所以根据抽屉原理至少有2个人是在同一天出生的。 78.从前11个自然数中任意取出6个,求证:其中必有2个数互质。 证明:把前11个自然数分成如下5组
(1,2,3)(4,5)(6,7)(8,9)(10,11)
6个数放入5组必然有2个数在同一组,那么这两个数必然互质。