2010一.选择题
1.若lim[?(?a)e]?1则a=
xx?o年考研数学三真题
1x1xA0 B1 C2 D3
2.设y1,y2是一阶线性非齐次微分方程y??p(x)y?q(x)的两个特解,若常数?,?使
?y1??y2是该方程的解,?y1??y2是该方程对应的齐次方程的解,则
For personal use only in study and research; not for commercial use
1111,?? B???,??? 22222122C??,?? D??,??
3333A??3.设函数f(x),g(x)具有二阶导数,且g??(x)?0.若g(x0)?a是g(x)的极值,则f(g(x))在x0取极大值的一个充分条件是
For personal use only in study and research; not for commercial use
Af?(a)?0 Bf?(a)?0 Cf??(a)?0 Df??(a)?0 4设f(x)?ln10x,g(x)?x,h(x)?e则当x充分大时有
x10Ag(x) For personal use only in study and research; not for commercial use Cf(x) ?,?s线性表示,下列命题正确的是: 5设向量组I:?1,?2,?,?r可由向量组II:?1,?2,A若向量组I线性无关,则r?s B若向量组I线性相关,则r>s For personal use only in study and research; not for commercial use C若向量组II线性无关,则r?s D若向量组II线性相关,则r>s 6.设A为4阶实对称矩阵,且A?A?0,若A的秩为3,则A相似于 2?1??1?????11????A? B ?1??1????????0?0????For personal use only in study and research; not for commercial use ??1??1??????1????1?C? D ????1?1???????0?0?????0,x?0?17.设随机变量X的分布函数F(x)??,0?x?1,则P(X=1)= ?2?x?1?e,x?111?1?1A0 B C?e D1?e 228.For personal use only in study and research; not for commercial use 9. 10.设f1(x)为标准正态分布概率密度,f2(x)为[-1,3]上均匀分布的概率密度,若 ?af(x),x?0f(x)??1(a?0,b?0)为概率密度,则a,b满足: ?bf2(x),x?0A2a+3b=4 B3a+2b=4 Ca+b=1 Da+b=2 二.填空题 11.For personal use only in study and research; not for commercial use 12. 13.设可导函数y=y(x),由方程14.设位于曲线y??2x?y0e?tdt??xsint2dt确定,则 02xdydxx?0?____________ 1x(1?lnx)(e?x???)下方,x轴上方的无界区域为G,则G绕x 轴旋转一周所得空间区域的体积为____________ 315.设某商品的收益函数R(p),收益弹性为1?p,其中p为价格,且R(1)=1,则 R(p)=________________ 16.For personal use only in study and research; not for commercial use 17. 18.若曲线y?x?ax?bx?1有拐点(-1,0),则b=_____________ 19.设A,B为3阶矩阵,且A?3,B?2,A?B?2,则A?B 20.For personal use only in study and research; not for commercial use 21. 22.设 ?1?132?_________ 1n2X1,X2,?X3是来自总体N(?,?)(??0)的简单随机样本。记统计量T??Xi,ni?1 则ET?___________2三.解答题 23.求极限lim(x?1)x???1x1lnx 24.计算二重积分 23,其中D由曲线与直线x?1?y(x?y)dxdy??Dx?2y?0及x?2y?0围成。 25.求函数u=xy+2yz在约束条件x?y?z?10下的最大值和最小值。 26. (1)比较 222?10lnt?ln(1?t)?dt与?tnlntdt(n?1,2,?)的大小,说明理由。 0n1(2)记un??10lnt?ln(1?t)?dt(n?1,2,?),求极限limun. nn??19.设f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(1)证明:存在??(0,2),使f(?)?f(0); (2)证明:存在??(0,3),使f??(?)?0 20 (0)??f(x)dx?f(2)?f(3) 0211????a?????设A??0??10?,b??1?.已知线性方程组Ax?b存在2个不同的解。?1?1?1??????()求?、a..1 (2)求方程组Ax?b的通解。?0?14???T21.设A???13a?,正交矩阵Q使得QAQ为对角矩阵,若Q的第一列为 ?4a0???1(1,2,1)T,求a、Q. 622.设二维随机变量(X,Y)的概率密度为f(x,y)?Ae?2x求常数A及条件概率密度fYX(yx). 23.箱中装有6个球,其中红、白、黑球的个数分别为1,2,3个。现从箱中随机地取出2个球,记X为取出的红球个数,Y为取出的白球个数。 (1)求随机变量(X,Y)的概率分布; (2)求Cov(X,Y). 2?2xy?y2,???x???,???y??? 2010年考研数学三之答案与解析 答案:CABC ADCA 1(p?29.-1 10. 11 pe343?1) 12.3 13.3 14.??? 22三解答题 15.解: ?limln(e?1)xe1?lnxlnx?limlnx?,而当x???,?0,2x??x??lnxxxex?1ln(e?1)e1?lnx1?lnx?lim??lim??1x???x???x???lnxlnxxlnxx1x1lnxlnxxlnxxlnxx故limlnxx?lim(x?1)x????e?1 16.解: 原式???(x3?3xy2?3x2y?y3)dxdy???(x3?3xy2)dxdyDD?2?dy?011?y22y(x3?3xy2)dx?1112424(1?2y?3y)dy?3(y?y)dy ??002?1415解 : 17. 设F(x,y,z,?)?xy?2yz??(x2?y2?z2?10)Fx??y?2?x?0??F??x?2z?2?y?0?令?y,最可能的最值点?F?2y?2?z?0z?222??F???x?y?z?10?0A(1,5,2),B(?1,5,?2),C(1,?5,2),D(?1,?5,?2),E(22,0,?2),F(?22,0,2). 因为在A,D两处u?55;在B,C两点处u?-55;在E,F两点处u?0。所以umax?55,umin?-5518. 解:(1)当0?t?1,?ln(1?t)?t,?lnt[ln(1?t)]n?tnlnt,n因此,?lnt[ln(1?t)]dt??tlntdt.001n1(2)由(1)知0?un??lnt[ln(1?t)]dt??tnlntdt.001n1 11n1??tlntdt???tlntdt?tdt?00n?1?0(n?1)21n1n?lim?tnlntdt?0,从而limun?0n??0n??119. 证:(1)设F(x)??f(t)dt(0?x?2),则?f(x)dx?F(2)?F(0).00x2根据拉格朗日中值定理,存在??(0,2),使F(2)?F(0)?2F?(?)?2f(?),即?f(x)dx?2f(?)由题设知?f(x)dx?2f(0),故f(?)?f(0).0022f(2)?f(3)介于f(x)在[2,3]上的最小值与最大值之间,根据连续函数的介值定理,2f(2)?f(3)存在??[2,3],使f(?)?.2f(2)?f(3)由题设知?f(0),故f(?)?f(0).2由于f(0)?f(?)?f(?),且0?????3,根据罗尔定理,存在?1?(0,?),(2)?2?(?,?),使f?(?1)?0,f?(?2)?0,从而存在??(?1,?2)?(0,3),使得f??(?)?020.解: (1)设?1,?2为Ax?b的2个不同的解,则?1-?2是Ax?0的一个非零解,故A?(??1)2(??1)?0,于是??1或??-1。当??1时,因为r(A)?r(A,b),所以Ax?b,舍去。当??-1时,对Ax?b的增广矩阵施以初等行变换?3???2??111a??10?1????1(A,b)??0?201??010???B?2??1?1?11??000a?2???????Ax?b有解,?a??2.(2)当???1,a??2时,?3???2?10?1?1B??010??,所以Ax?b的通解为x??2??0000??????3??1?1??????1??k?0?,其中k为任意常数。2?????0??1?