2017Äê´º¹ú¼Ò¿ª·Å´óѧ¡°¾¼ÃÊýѧ»ù´¡¡±ÈÎÎñ1²Î¿¼´ð°¸
Ìî¿ÕÌâ±ØÐëÊÖд´ð°¸ºóÅÄÕÕÉÏ´«£¡ ÈôÖ±½Ó½«ÌṩµÄµç×ÓÎĵµ´ð°¸½ØͼÉÏ´«£¬ Ôò³É¼¨°´0·Ö¼ÆË㣡£¡£¡Çмǣ¬Çмǣ¡£¡
Ò»¡¢Ìî¿ÕÌâ 1.limx?0x?sinx?___________________.´ð°¸£º0 x?x2?1,x?02.Éèf(x)??£¬ÔÚx?0´¦Á¬Ðø£¬Ôòk?________.´ð°¸£º1
?k,x?0?3.ÇúÏßy?2)µÄÇÐÏß·½³ÌÊÇ.´ð°¸£ºy?x+1ÔÚ(1,13x? 224.É躯Êýf(x?1)?x2?2x?5£¬Ôòf?(x)?____________.´ð°¸£º2x 5.Éèf(x)?xsinx£¬Ôòf??()?__________.´ð°¸£º?¶þ¡¢µ¥ÏîÑ¡ÔñÌâ
1. µ±x???ʱ£¬ÏÂÁбäÁ¿ÎªÎÞÇîСÁ¿µÄÊÇ£¨D£©
?2x2sinxA£®ln(1?x) B£®C£®ex D£®
xx?11¦Ð2¦Ð 22. ÏÂÁм«ÏÞ¼ÆËãÕýÈ·µÄÊÇ£¨B£© A.limx?0xx?1 B.lim?x?0xx?1
C.limxsinx?01sinx?1 D.lim?1
x??xx3. Éèy?lg2x£¬Ôòdy?£¨ B £©£® A£®
11ln101dxB£®dxC£®dxD£®dx 2xxln10xx4. Èôº¯Êýf (x)ÔÚµãx0´¦¿Éµ¼£¬Ôò( B )ÊÇ´íÎóµÄ£®
A£®º¯Êýf (x)ÔÚµãx0´¦Óж¨Òå B£®limf(x)?A£¬µ«A?f(x0)
x?x0 C£®º¯Êýf (x)ÔÚµãx0´¦Á¬Ðø D£®º¯Êýf (x)ÔÚµãx0´¦¿É΢
5.µ±f?A£®
?1???x,Ôòf?(x)?£¨B£©. ?x?1111?? B£® C£® D£® 22xxxx
½â´ðÌâ±ØÐëÊÖд½âÌâ²½ÖèºóÅÄÕÕÉÏ´«£¡
ÈôÖ±½Ó½«ÌṩµÄwordÎĵµ´ð°¸½ØͼÉÏ´«£¬ Ôò³É¼¨°´0·Ö¼ÆË㣡£¡£¡Çмǣ¬Çмǣ¡£¡
Èý¡¢½â´ðÌâ 1£®¼ÆË㼫ÏÞ
x2?3x?2(x?2)(x?1)x?21£¨1£©lim = = ??limlim2x?1x?1x?12x?1(x?1)(x?1)(x?1)x2?5x?6(x?2)(x?3)x?31£¨2£©lim2=lim = lim=
x?2x?6x?8x?2(x?2)(x?4)x?2(x?4)2£¨3£©limx?0(1?x?1)(1?x?1)1?x?1=lim x?0xx(1?x?1)=limx?0?x?11=lim??
2x(1?x?1)x?0(1?x?1)1?35?2x2?3x?5xx?1 lim?£¨4£©limx??x??3x2?2x?42433??2xx£¨5£©lim5xsin3x33sin3x= ?limx?03xsin5x55x?0sin5xx2?4(x?2)(x?2)£¨6£©lim?lim?4
x?2sin(x?2)x?2sin(x?2)
1?xsin?b,x?0?x?2£®É躯Êýf(x)??a,x?0£¬
?sinxx?0?x?ÎÊ£º£¨1£©µ±a,bΪºÎֵʱ£¬f(x)ÔÚx?0´¦Óм«ÏÞ´æÔÚ£¿ £¨2£©µ±a,bΪºÎֵʱ£¬f(x)ÔÚx?0´¦Á¬Ðø. ½â£º£¨1£©ÒªÊ¹f(x)ÔÚx?0´¦¼«ÏÞ´æÔÚ£¬Ôò±ØÓÐ
x?0+limf(x)?limf(x) ?x?0f(x)?limÓÖlim+?x?0x?0sinx?1 x1??lim-f(x)?lim-?xsin?b??b x?0x?0?x?¼´b=1
ËùÒÔµ±aΪʵÊý£¬b=1ʱ£¬f(x)ÔÚx=0´¦¼«ÏÞ´æÔÚ
£¨2£©ÒªÊ¹f(x)ÔÚx?0´¦Á¬Ðø£¬Ôò±ØÓÐ
limf(x)?f(0)=a
x?0µ±a?b?1ʱ£¬f(x)ÔÚx?0´¦Á¬Ðø¡£
3£®¼ÆËãÏÂÁк¯ÊýµÄµ¼Êý»ò΢·Ö£º £¨1£©y?x2?2x?log2x?22£¬Çóy?
x½â£ºy??2x?2ln2?1 xln2£¨2£©y?½â£ºy?=
ax?b£¬Çóy?
cx?da(cx?d)?c(ax?b)ad?cb ?22(cx?d)(cx?d)13x?513x?5£¬Çóy?
12£¨3£©y?½â£ºy?=(3x?5)?y???32(3x?5)3
£¨4£©y?½â£ºy??x?xex£¬Çóy? 12xax?(x?1)ex
£¨5£©y?esinbx£¬Çódy ½â£ºy??(e)?sinbx?e(sinbx)?
axax?aeaxsinbx?eaxcosbx?b
?eax(asinbx?bcosbx)dy?eax(asinbx?bcosbx)dx
£¨6£©y?e?xx£¬Çódy
1x311½â£ºdy?(x?2ex)dx
2x£¨7£©y?cosx?e?x£¬Çódy ½â£ºdy?(2xe?x?22sinx2x)dx
£¨8£©y?sinnx?sinnx£¬Çóy? ½â£ºy?=nsinn?1xcosx+cosnxn=n(sinn?1xcosx?cosnx)
£¨9£©y?ln(x?1?x2)£¬Çóy? ½â£º
y???1x?1?x212(x?1?x2)?x1?x)?21?122?(1?(1?x)2x)22x?1?x1x?1?x?(1?11?x2
£¨10£©y?2cot1x1?3x2?2xx3£¬Çóy?
ln21?21?6?y??x?x ½â£º
126x2sinx4.ÏÂÁи÷·½³ÌÖÐyÊÇxµÄÒþº¯Êý£¬ÊÔÇóy?»òdy £¨1£©x?y?xy?3x?1£¬Çódy ½â£º·½³ÌÁ½±ß¹ØÓÚxÇóµ¼£º2x222cot1x5?2yy??y?xy??3?0
(2y?x)y??y?2x?3£¬
dy?y?3?2xdx
2y?xxy£¨2£©sin(x?y)?e?4x£¬Çóy?
½â£º½â£º·½³ÌÁ½±ß¹ØÓÚxÇóµ¼cos(x?y)(1?y?)?exy(y?xy?)?4