实验指导书(ARIMA模型建模与预测)
例:我国1952-2011年的进出口总额数据建模及预测
1、模型识别和定阶
(1)数据录入
打开Eviews软件,选择“File”菜单中的“New--Workfile”选项,在“Workfile structure type”栏选择“Dated –regular frequency”,在“Date specification”栏中分别选择“Annual”(年数据) ,分别在起始年输入1952,终止年输入2011,文件名输入“im_ex”,点击ok,见下图,这样就建立了一个工作文件。
在workfile中新建序列im_ex,并录入数据(点击File/Import/Read Text-Lotus-Excel…,
找到相应的Excel数据集,打开数据集,出现如下图的窗口,在“Data order”选项中选择“By observation-series in columns”即按照观察值顺序录入,第一个数据是从B15开始的,所以在“Upper-left data cell”中输入B15,本例只有一列数据,在“Names for series or number if named in file”中输入序列的名字im_ex,点击ok,则录入了数据):
(2)时序图判断平稳性
双击序列im_ex,点击view/Graph/line,得到下列对话框:
得到如下该序列的时序图,由图形可以看出该序列呈指数上升趋势,直观来看,显著非平稳。
IM_EX240,000200,000160,000120,00080,00040,0000556065707580859095000510 (3)原始数据的对数处理 因为数据有指数上升趋势,为了减小波动,对其对数化,在Eviews命令框中输入相应
的命令“series y=log(im_ex)”就得到对数序列,其时序图见下图,对数化后的序列远没有原始序列波动剧烈:
Y13121110987654556065707580859095000510 从图上仍然直观看出序列不平稳,进一步考察序列y的自相关图和偏自相关图:
从自相关系数可以看出,呈周期衰减到零的速度非常缓慢,所以断定y 序列非平稳。为了证实这个结论,进一步对其做ADF检验。双击序列y,点击view/unit root test,出现下图的对话框,
我们对序列y本身进行检验,所以选择“Level”;序列y存在明显的线性趋势,所以选择对带常数项和线性趋势项的模型进行检验,其他采用默认设置,点击ok。
检验结果见下图,可以看出在显著性水平0.05下,接受存在一个单位根的原假设,进一步验证了原序列不平稳。为了找出其非平稳的阶数,需要对其一阶差分序列和二阶差分序列等进行ADF检验。
(4)差分次数d的确定
y序列显著非平稳,现对其一阶差分序列进行ADF检验。在对y的一阶差分序列进行ADF单位根检验之前,需要明确y的一阶差分序列的趋势特征。在Eviews命令框中输入相应的命令“series dy1=D(y)”就得到对数序列的一阶差分序列dy1,其时序图见下图
DY1.6.4.2.0-.2-.4556065707580859095000510 由y的一阶差分序列的时序图可见,一阶差分序列不具有趋势特征,但具有非零的均值。因此,在下图对序列y的单位根检验的对话框中选择“1st difference”,同时选择带常数项、不带趋势项的模型进行检验,其他采用默认设置,点击ok。
检验结果见下图,可以看出在显著性水平0.05下,拒绝存在单位根的原假设,说明序列y的一阶差分序列是平稳序列,因此d=1。
(5)建立一阶差分序列
在Eviews对话框中输入“series x=y-y(-1)”或“series x=y-y(-1)”,并点击“回车”,便得到了经过一阶差分处理后的新序列x,其时序图见下图,从直观上来看,序列x也是平稳的,这就可以对x序列进行ARMA模型分析了。 X.6.4.2.0-.2-.4556065707580859095000510 (6)模型识别和定阶 双击序列x,点击view/Correlogram,出现下图对话框,