好文档 - 专业文书写作范文服务资料分享网站

牛吃草问题练习及答案解析

天下 分享 时间: 加入收藏 我要投稿 点赞

牛吃草问题

历史起源:英国数学家牛顿(1642—1727)说过:“在学习科学的时候,题目比规则还有用些”因此在他的着作中,每当阐述理论时,总是把许多实例放在一起。在牛顿的《普遍的算术》一书中,有一个关于求牛和头数的题目,人们称之为牛顿的牛吃草问题。 主要类型: 1、求时间 2、求头数

除了总结这两种类型问题相应的解法,在实践中还要有培养运用“牛吃草问题”的解题思想解决实际问题的能力。 基本思路:

①在求出“每天新生长的草量”和“原有草量”后,已知头数求时间时,我们用“原有草量÷每天实际减少的草量(即头数与每日生长量的差)”求出天数。

②已知天数求只数时,同样需要先求出“每天新生长的草量”和“原有草量”。 ③根据(“原有草量”+若干天里新生草量)÷天数”,求出只数。 基本公式:

解决牛吃草问题常用到四个基本公式,分别是∶

(1)草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数);

(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;` (3)吃的天数=原有草量÷(牛头数-草的生长速度); (4)牛头数=原有草量÷吃的天数+草的生长速度 第一种:一般解法

“有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。如果养牛21头,那么几天能把牧场上的草吃尽呢并且牧场上的草是不断生长的。” 一般解法:把一头牛一天所吃的牧草看作1,那么就有:

(1)27头牛6天所吃的牧草为:27×6=162(这162包括牧场原有的草和6天新长的草。) (2)23头牛9天所吃的牧草为:23×9=207(这207包括牧场原有的草和9天新长的草。) (3)1天新长的草为:(207-162)÷(9-6)=15 (4)牧场上原有的草为:27×6-15×6=72

(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(21-15)=72÷6=12(天)

所以养21头牛,12天才能把牧场上的草吃尽。 第二种:公式解法

有一片牧场,草每天都匀速生长(草每天增长量相等),如果放牧24头牛,则6天吃完牧草,如果放牧21头牛,则8天吃完牧草,假设每头牛吃草的量是相等的。(1)如果放牧16头牛,几天可以吃完牧草(2)要使牧草永远吃不完,最多可放多少头牛

解答:

1)草的生长速度:(21×8-24×6)÷(8-6)=12(份) 原有草量:21×8-12×8=72(份) 16头牛可吃:72÷(16-12)=18(天)

2)要使牧草永远吃不完,则每天吃的份数不能多于草每天的生长份数 所以最多只能放12头牛。

例题一 一片青草地,每天都匀速长出青草,这片青草可供27头牛吃6周或23头牛吃9周,那么这片草地可供21头牛吃几周 解:把每天每头牛吃的草量看成“1”。 第6周时总草量为:6×27=162 第9周时总草量为:9×23=207 3周共增加草量:207-162=45

每周新生长草:45÷(9-6)=15 即每周生长出的草可以供15头牛吃。 原有草量为:162-6×15=72

所以可供21头牛吃:72÷(21-15)=12(周) 随堂练习:

1、牧场上有一片草地,每天牧草都匀速生长。这片牧草可供10头牛吃20天,或可供15头牛吃10天,问可供25头牛吃几天 解:20天时草地上共有草:10×20=200 10天时草地上共有草:15×10=150

草生长的速度为:(200-150)÷(20-10)=5 即每天生长的草可供5头牛吃。 原草量为:200-20×5=100

可供25头牛吃:100÷(25-5)=5(天)

2、一片草地,每天都匀速长出青草。如果可供24头牛吃6天,或20头牛吃10天吃完。那么可供19头牛吃几天 解:6天时共有草:24×6=144 10天时共有草:20×10=200

草每天生长的速度为:(200-144)÷(10-6)=14 原有草量:144-6×14=60

可供19头牛: 60÷(19-14)=12(天)

3、一片牧场长满草,每天匀速生长,这片牧场可供5头牛吃8天,可供14头牛吃2天,问可供10头牛吃几天

解:8天时草的总量为:5×8=40 2天时草的总量为:14×2=28

草每天生长的速度为:(40-28)÷(8-2)=2 即每天生长的草可供2头牛吃。

草地上原有的草为:28-2×2=24 可供10头牛吃:24÷(10-2)=3(天)

4、某牧场上的草,若用17人去割,30天可以割尽,若用19人去割,则只要24天便可割尽,问用多少人割,6天可以割尽(草匀速生长,每人每天割草量相同) 解:(17×30-19×24)÷(30-24)=9 17×30-9×30=240 240÷6+9=49(人)

5、武钢的煤场,可储存全厂45天的用煤量。当煤场无煤时,如果用2辆卡车去运,则除了供应全厂用煤外,5天可将煤场储满;如果用4辆小卡车去运,那么9天可将煤场储满。如果用2辆大卡车和4辆小卡车同时去运,只需几天就能将煤厂储满(假设全厂每天用煤量相等。)

解:(45+5)÷5=10 (45+9)÷9=6 45÷(10+6-1)=3(天) 6、林子里有猴子喜欢吃的野果,23只猴子可在9周内吃光,21只猴子可在12周内吃光,问如果有33只猴子一起吃,则需要几周吃光(假定野果生长的速度不变)【浙江2007】4 解:(21×12-23×9)÷(12-9)=15 23×9-15×9=72 72÷(33-15)=4(周)

7、一块草地,10头牛20天可以把草吃完,15头牛10天可以把草吃完。问多少头牛5天可以把草吃完

解:(10×20-15×10)÷(20-10)=5 10×20-20×5=100 100÷5+5=25(头)

例题二 由于天气逐渐冷起来,牧场上的草不仅不长多,反而以固定的速度在减少,照这样计算,某牧场草地上的草可供20头牛吃5天,或可供15头牛吃6天,那么,可供多少头牛吃10天

解:5天时草地上共有草:5×20=100 6天时草地上共有草:6×15=90

每天草地上的草减少:(100-90)÷(6-5)=10 原草量为:100+5×10=150

10天后还剩下的草量: 150-10×10=50 50÷10=5(头) 随堂练习:

1、因天气渐冷,牧场上的草以固定的速度减少。已知牧场上的草可供33头牛吃5天,或可供24头牛吃6天。照这样计算,这个牧场可供多少头牛吃10天 解:5天时草地上共有草:33×5=165 6天时草地上共有草:24×6=144 每天减少:(165-144)÷(6-5)=21

原有的草量为:165+5×21=270 10共减少了:21×10=210 10天后剩草量为:270-210=60 60÷10=6(头)

2、天气逐渐变冷,牧场上的草每天以均匀的速度减少。经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天。那么可供11头牛吃几天 解:5天时共有草:20×5=100 6天时共有草:16×6=96

草减少的速度为:(100-96)÷(6-5)=4 原有的草量为:100+4×5=120

可供11头牛吃:120÷(11+4)=8(天)

3、因为天气日渐寒冷,牧场上的草不但不生长,反而以固定的速度每天在减少。如果20头牛去吃20天可以吃完;如果30头牛去吃15天可以吃完。那么,如果10头牛去吃____天可以吃完。

解:( 30×15-20×20)÷(20-15)=10 20×20+10×20=600 600÷(10+10)=30(天) 答:10头牛去吃30天可吃完。

4、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。已知某块草地上的草可供20头牛吃5天或可供12头牛吃7天。照此计算,可供6头牛吃几天 解:

假设1头牛1天吃1份的草

20头牛5天一共吃了:20×5=100 份的草 12头牛7天一共吃了:12×7=84 份的草 时间相差:7-5=2 (天) 草量减少:100-84=16 份的草 说明,一天减少:16÷2=8 份的草 5天减少了:8×5=40 份的草 原来牧场上有:100+40=140 份的草

这140份的草,可供6头牛吃:140÷(6+8)=10(天)

例题三 自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼,已知男孩每分钟走20级台阶,女孩每分钟走15台阶,结果男孩用5分钟到达楼上,女孩用了6分钟到达楼上。问该扶梯共有多少级台阶 解:5分钟时男孩共走了:20×5=100(台阶) 6分钟时女孩共走了:15×6=90(台阶)

自动扶梯的速度为:(100-90)÷(6-5)=10(台阶) 自动扶梯共有:100+5×10=150(台阶)

随堂练习:

1、两位顽皮的孩子逆着自动扶梯的方向行走,在20秒里,男孩可走27级台阶,女孩可走24级台阶,男孩走了2分钟到另一端,女孩走了3分钟到达另一端,该扶梯共有多少级台阶

解:男孩共走了:2×60÷20×27=162 女孩共走了:3×60÷20×24=216

自动扶梯的速度:(216-162)÷(3-2)=54(台阶)

162-54×2=54

2、自动扶梯以均匀的速度行驶着,小明和小红要从扶梯上楼。已知小明每分钟走25级台阶,小红每分钟走20级台阶,结果小明用5分钟,小红用了6分钟分别到达楼上。该扶梯共有多少级台阶

解:5分钟小明共走了:25×5=125 6分钟小红共走了:20×6=120

自动扶梯的速度为:(125-120)÷(6-5)=5 该扶梯的台阶:125+5×5=150(台阶)

3、自动扶梯以均匀的速度行驶着,小明和小红要从扶梯上楼。已知小明每分钟走20级台阶,小红每分钟走14级台阶,结果小明用4分钟,小红用了5分钟分别到达楼上。该扶梯共有多少级台阶

解:5分钟小明共走了:20×4=80 6分钟小红共走了:14×5=70

自动扶梯的速度为:(80-70)÷(6-5)=10 该扶梯的台阶:80+10×4=120(台阶)

4、自动扶梯以匀速由下往上行驶,两个性急的孩子嫌扶梯走得慢,于是在行驶的扶梯上,男孩每秒钟向上走1梯级,女孩每3秒钟走2梯级。结果男孩用50秒到达楼上,女孩用60秒到达楼上。该扶梯共有多少级

解:(50×1-60÷3×2)÷(60-50)=1

50×1+50×1=100(级)

例题四 一只船有一个漏洞,水以均匀的速度进入舱内,发现漏洞时已经进了一些水,如果用12人舀水,3小时舀完。如果只有5个人舀水,要10小时才能舀完。现在要想2小时舀完水,需要多少人

解:把每个人每小时的舀水量看成单位‘1’ 3个小时后共有水:12×3=36 10个小时后共用水:5×10=50

每小时的进水量:(50-36)÷(10-3)=2 发现时船舱内有水:36-3×2=30 原水量舀完共需:30÷2=15(人) 共需:15+2=17(人)

牛吃草问题练习及答案解析

牛吃草问题历史起源:英国数学家牛顿(1642—1727)说过:“在学习科学的时候,题目比规则还有用些”因此在他的着作中,每当阐述理论时,总是把许多实例放在一起。在牛顿的《普遍的算术》一书中,有一个关于求牛和头数的题目,人们称之为牛顿的牛吃草问题。主要类型:1、求时间2、求头数除了总结这两种类型问题相应的解法,在实践中还要有培养运用“牛吃草问题”的
推荐度:
点击下载文档文档为doc格式
7mcrb7iix783hrt8bf1m52amw9lhr300884
领取福利

微信扫码领取福利

微信扫码分享