好文档 - 专业文书写作范文服务资料分享网站

(答案)苏大医学部2010级硕士卫生统计 doc 

天下 分享 时间: 加入收藏 我要投稿 点赞

苏州大学医学部2010级硕士《卫生统计学》试卷 2011.1

姓名: 学院: 专业: 学号: 成绩:

一、最佳选择题(20小题,每小题1分,共20分): 1. 抽样研究的目的是( B ): A. 研究样本统计量 B. 由样本推断总体 C. 研究总体参数 D. 研究误差

2. 比较两地10年来心脏病和恶性肿瘤死亡率的上升趋势,宜选用(A )。 A.线图 B.半对数线图 C.条图 D.直方图

3.标准正态分布曲线下,在横轴上从-∞到的面积占总面积的比例为(A )。 A.97.5% B.95%

C.50% D.不能确定(与标准差的大小有关)

4.某年疾病统计发现,在同等级、同规模的两个医院中,甲院对5型肝炎的治愈率都高于乙院,但总的治愈率却是乙院高于甲院,造成这种现象的可能原因是( C )。

A.两个医院的医疗技术、设备相差悬殊 B.两个医院对预后的诊断标准不一致 C.治愈率低的类型肝炎患者构成比甲院高于乙院 D.治愈率低的类型肝炎患者构成比甲院低于乙院

5.随机抽取某地30名正常成年男子,测定其血红蛋白量,总体标准差未知,则该地正常成年男子血红蛋白总体均数的95%置信区间为:( C ) A. B.

C. D.

6.已知某市20岁以上男子平均身高为172cm,该市某大学随机抽36名20岁以上男生,测得其身高,由此算得其总体均数95%的置信区间为:171.7-177.5cm,按水准,可认为该大学20岁以上男生的平均身高( C )该市20岁以上男子的平均身高。

A. 高于 B. 高于或等于 C. 等于 D. 低于

7.甲乙两人分别从随机数字表中抽得30个(各取两位数字)随机数字作为两个样本,求得,和,,则理论上认为(C ) 。

A.=,= B.作两样本均数比较的检验,必然无差别 C. D.作两方差齐性的检验,必然方差齐

8.完全随机设计方差分析中的组间均方是( B )的统计量。

A.表示抽样误差大小 B.表示处理因素及随机误差两者综合影响 C.表示某处理因素的效应作用大小 D.表示N个数据的离散程度 9.分析四格表时,通常在( D )情况下需计算校正卡方值。

A.n>40,有T:140,T>1,有T:140的四格表中如有一个实际数为0,( C )。 A.就不能做检验 B.就必须用校正检验 C.还要看T才能决定是否可作检验 D.只能用确切概率法 11.成组设计两样本比较的秩和检验中,描述不正确的是( A )。 A.将两组数据的绝对值统一由小到大编秩

B.遇有相同数据,若在同一组,可按顺序编秩 C.遇有相同数据,若在不同组,取其平均秩次 D.以样本例数较小组的秩和为T查T界值表

12. 直线相关分析可用于研究( B )的数量关系。

A.儿童的性别与体重 B.儿童的身高与体重

C.儿童的性别与血型 D.母亲的职业与儿童的智商

13.某医师研究新药龙心素胶囊治疗缺血性中风(风痰瘀阻证)恢复期的临床疗效,对照组采用阳性药物溶栓胶囊,这属于( C )。

A.空白对照 B.历史对照

C.标准对照 D.相互对照

14.调查某年某市城区中学生的身高、体重,可按( A )分两层进行随机抽样。

A.性别 B.城、乡 C.学习成绩 D.不同年份

15.某大学新校区共有6个学院,为调查学生艾滋病知识的知晓程度,在其中的(医学类)3个学院对学生统一编号随机抽取部分学生;又在其它3个非医学学院随机抽取若干个班,调查抽中班的全部学生。该调查中涉及的基本抽样方法有( A )抽样。 A.分层、整群、单纯随机 B.分层、系统、整群 C.单纯随机、分层 D.分层、整群

16.多重线性回归中要说明哪个变量对因变量作用大,应看( D )。 A.偏回归系数 B.偏回归系数的标准误

C.标准偏回归系数 D.标准偏回归系数的绝对值 17.对匹配设计的Logistic回归,( C )肯定错误。

A.采用条件Logistic回归 B.应变量是二分类变量 C.不同匹配组相同 D.自变量可以是多分类变量

18.为了研究对肺癌患者生存时间的影响因素,对病人进行随访观察,观察结果分为两档: 即病人生存时间?2年和?2年,无截尾数据。考察的危险因素有治疗方法(4种)、治疗 前病人的状态(6种)、病人的年龄、癌细胞的类型(3种)等。这种资料最适合选用 的统计方法分析是(D )。

A.?2年和?2年两组t检验 B.多重线性回归分析 C.COX回归分析 D.Logistic回归分析

19.Bayes判别的判别规则是将判别对象判为( A )最大的那一类。 A. 判别函数值 B.先验概率

C. D.

20.影响假设检验功效的要素不包括( B )。

A.样本量? B.样本统计量? C.个体间变异的大小? D.?值

二、填空题(每空0.5分,共35分):

1.教材P208练习题中计算分析题第1题,为分析死亡与该三个因素之间的关系,SAS运行结果:

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

Standard Standardized Parameter DF Estimate Error Chi-Square Pr > ChiSq Estimate Intercept 1 -2.0858 0.3513 35.2624 <.0001

x1 1 1.1098 0.3485 10.1419 0.0014 0.2837 x2 1 0.7028 0.3292 4.5586 0.0328 0.1899 x3 1 0.9751 0.3440 8.0362 0.0046 0.2691

Odds Ratio Estimates Point 95% Wald

Effect Estimate Confidence Limits x1 3.034 1.532 6.006 x2 2.019 1.059 3.850 x3 2.651 1.351 5.203 请根据上面的运行结果填空:

⑴、分别为(1.1098)、(1.1098 ),对作假设检验,卡方值、P值分别为 ( 4.5586 )、( 0.0328 ),可认为( 抢救前是否发生过心衰)对(死亡)有影响。 ⑵x2的标准化偏回归系数是( 0.1899 ),对死亡率的最大影响因素是(x1)。 ⑶OR3的95%的置信区间未包含( 1 ),可认为抢救前AMI已超过12小时的死亡率是抢救前AMI未超过12小时死亡率的( 2.651 )倍。 2.对教材P56练习题中计算题第1题,请填空:

要估计该大学一年级大学生空腹血糖总体均数的置信区间:应采用公式( 5-5 )或 公式(5-6 ),将、s、的具体数值代入两公式,得95%置信区间的计算式分别为(4.52±1.984×0.63/ )、( 4.52±1.96×0.63 );当n<50时,且近似正态,只能采用公式(5-6 )。要计算该大学一年级大学生空腹血糖的参考值范围:当资料近似正态分布时应采用公式(3-19),将、s、的具体数值代入此公式,得99%参考值范围的计算式为(4.52±2.58×0.63 );当资料不近似正态分布时应采用( 百分位数法 )方法。

3.针对教材P78练习题中计算题第3题的资料,请填空: 若两组资料符合(独立性)、(正态性 )、( 方差齐性)条件时,应采用公式 ( 7-5)作t检验;若两组资料近似正态分布但方差不齐,应采用( t’ )检验, 此时自由度的校正有(Satterhwaite)、( Welch )两种方法。经W检验,服 药组不呈正态,应采用( 第十)章( 第二节 )节的方法作( 成组设计两样本比 较的秩和 ) 检验。

4. 针对教材P92练习题中计算题第2题的资料,请填空:

此研究属于(完全设计 )设计,若资料符合( 独立性 )、( 正态性 )、 (方差齐性)条件,应采用公式( 8-5 )计算F值作方差分析;后两组不比,均 分别与正常组比,两两比较可采用公式( 8-12 )作( LSD-t )检验。第2组经 W检验,P=0.0114, ( 不服从 )正态分布,宜采用(十 )章( 第三 )节的( 完全随机设计多个样本比较的秩和 )检验。

5. 针对教材P108练习题中计算题第2题的资料,请填空:

欲比较两种方法检出率的差异:因b+c ( 大于 )40 , 计算卡方值( 不用 )校正,应采 用公式( 9-7 )计算卡方值;检验结果P=0.0833,可认为两种方法的总体检出率(相等 )。 欲分析两种方法检出结果的关联性:应采用公式(9-2或9-4 )计算卡方值;检验结 果P=0.0253,可认为两种方法检出结果(有关 )。 6. 针对教材P127练习题中计算题第3题的资料,请填空:

此题应采用第十章第( 二 )节(两组等级资料比较的秩和检验 )方法,疗效的“显 效”等级秩次范围为(108—131),平均秩次为(119.5);应采用公式(10-3) 计算z值,已算出=13378.5,=8357.5,则z值计算公式中的T=(8357.5);在的 计算中,分别为(107 )、( 24 )、(53 )、( 24);已算出z=0.5413, 可认为( 两组无差别 )。

7. 针对教材P142练习题中计算题第1题的资料,请填空:

当凝血酶浓度x与凝血时间y服从(双变量正态 )分布时,可进行x、y

的直线相关分析,按公式( 11-1 )计算简单相关系数,r的分子是x、y的(离均差乘积 )平方和,分母中的表示x的(离均差 )平方和; 算出r=-0.92646, 应采用公式

( 11-5 )检验-0.92646与( 0 )的差别是否具有统计学意义,检验结果t=8.87, 可认为(小于 ) 0。对两变量进行直线回归分析,应分别采用公式( 11-10)、

公式(11-11 )计算b、a;应按公式( 11-16 )对b作t检验,t值的分母代表( b的 标准误 ),中的称为(剩余标准差 ),是( 剩余(或误差)均方)的算术平 方根,t值约等于( 8.87 )。 三、是非判断与改错题(正确在其后( )内打√,错误在( )内打×,是否判断每小题 0.5分,改错每小题0.5分,共45分): 1.P230练习题中计算题第2题,有40名肺癌病人的生存资料, 其中X1:生活行动能力评分(百分制);X2:病人年龄(年);X3: 由诊断到进入研究时间(月);X4:病理类型,分为鳞癌、小型细胞癌、腺癌、大型细胞癌4种(哑变量:x41=1为鳞癌、x41=0为非鳞癌,x42=1为小型细胞癌、x42=0为非小型细胞癌,x43=1为腺癌、x43=0为非腺癌);X5:化疗方法,常规法为1,试验新法为0;生存时间为t(天),结局变量为c。作后退法Cox回归分析,SAS程序如下,请对程序语句作是非判断与改错: ⑴ date lx15_2; ( × ) 改错:data

⑵ input x1_x3 x41 x42 x43 x5 t c ; (× ) 改错:x1-x3

⑶ cads;( × ) 改错:cards;

⑷ 64 70 5 1 0 0 1 411 0 (× ) 改错:70 64 60 63 9 1 0 0 1 126 0 70 65 11 1 0 0 1 118 0 40 69 10 1 0 0 1 82 0

........................ ;

⑸ proc logistic ; (× ) 改错:phreg ⑹ model t*g(1)=x1-x3 x41 x42 x43 x5 (× ) 改错:t*c(1)

⑺ /risklimits; (× ) 改错:/risklimits

⑻ selection=stepwise; (× ) 改错:selection=backword ⑼ sle=0.10; (× ) 改错:sls=0.10; ⑽ run. (× ) 改错:run;

2. 针对P14练习题中应用题第4题的资料,请完成下列是非判断与改错:

⑴ 此资料可绘制市区、郊区两条线图。 (× ) 改错:以婴儿、新生儿、幼儿为独立变量,绘制市区、郊区复式条图

⑵ 此资料可绘制市区、郊区两等圆构成图。 (× ) 改错:以婴儿、新生儿、幼儿为独立变量,绘制市区、郊区复式条图

⑶ 此资料可以市区、郊区为两独立变量,绘制婴儿、新生儿、幼儿复式条图。( ×) 改错:以婴儿、新生儿、幼儿为独立变量,绘制市区、郊区复式条图

⑷ 此资料可以婴儿、新生儿、幼儿为独立变量,绘制市区、郊区复式条图。 ( √ ) 改错:

3. 针对P32练习题中计算题第5题的资料,请完成下列是非判断与改错: ⑴ 此资料属对称资料。( × ) 改错:此资料属非对称(或偏态)资料。

⑵ 此资料属左偏态资料。( × ) 改错:此资料属右偏态资料。

⑶ 此资料可采用直接法计算均数描述集中趋势。 ( × ) 改错:可采用频数表计算中位数描述集中趋势。

⑷ 此资料可采用加权法计算均数描述集中趋势。 ( × ) 改错:可采用频数表计算中位数描述集中趋势。

⑸ 此资料可采用加权法计算几何均数描述集中趋势。 (× ) 改错:可采用频数表计算中位数描述集中趋势。

⑹ 此资料可采用加权法计算s描述离散趋势. ( × ) 改错:可计算四分位数间距描述变异程度。

⑺ 此资料可计算极差描述变异程度。 (× ) 改错:可计算四分位数间距描述变异程度。

⑻ 此资料可按P75-P25计算变异程度。 ( √ ) 改错:

⑼ 此资料可采用正态分布法计算参考值范围。 (× ) 改错:可采用百分位数法制定参考值范围。

⑽ 此资料可按P2.5-P97.5计算95%的参考值范围。 ( √ ) 改错:

4. 针对P42练习题中应用题第4题的资料,请完成下列是非判断与改错:

⑴ 因各科治愈率不同,故出现题中提到的两种相反的现象。 ( × ) 改错:因各科治愈率不同,及两医院各科出院人数构成不同

⑵ 因两院各科出院人数构成不同,故出现题中提到的两种相反的现象。 ( × ) 改错:因各科治愈率不同,及两医院各科出院人数构成不同

⑶ 计算两组标化治愈率不可选用甲院的资料作为标准。 ( × ) 改错:可选用甲院的资料作为标准。

⑷ 选用同一标准计算出甲、乙医院标化治愈率分别为,必有。(× ) 改错:必有

5. 针对P56练习题中计算题第3题的资料,请完成下列是非判断与改错:

⑴ 该地4万人中白血病的患者数近似服从为0.0001、n=4的二项分布。 (× ) 改错:近似服从为0.0001、n=40000的二项分布。

⑵ 该地4万人中白血病的患者数近似服从均数为0.0001的Poisson分布。 (× ) 改错:近似服从均数为0.0001×40000=4的Poisson分布。 ⑶ 该地4万人中白血病的样本患病率的标准误为。 (× ) 改错:

⑷ 该地4万人中未发现白血病的概率。( × ) 改错:

⑸ 该地4万人中未发现白血病的概率。 ( × ) 改错:

⑹ 该地4万人中发现白血病患者不超过3人的概率: (× ) 改错:

⑺ 该地4万人中发现白血病患者不超过3人的概率: ( × )

改错:

6. 对P194练习题中计算题第1题的资料进行逐步回归分析,得以下最后一步有关结果,请完成下列是非判断与改错:

⑴ x2、x4的简单相关系数为0.41527,对其假设检验的P值为0.0312,可认为在固定其它变量的影响下,x2、x4具有直线相关关系。 ( × )

改错:在未固定其它变量的影响时,x2、x4具有正的直线相关关系。

⑵ 最终留在模型中的自变量为x2、x3、x4,b0、b2、b3、b4的估计值分别为6.49962、0.40235、-0.28704、0.66323,则回归方程为: (× ) 改错:

⑶ x2、x3的标准化偏回归系数分别为0.35409、-0.36013,说明x2对y的作用比x3大。 ( × ) 改错:x2对y的作用比x3小。

⑷ =0.5981,它反映x2、x3、x4间总的相关程度。 ( × ) 改错:它反映y与x2、x3、x4间总的相关程度。 ⑸ ( × ) 改错:

⑹回归平方和等于133.09783,则回归均方等于133.09783÷4。 ( × ) 改错:133.09783÷3

⑺回归均方、误差均方分别为44.36594、3.88931,则对回归模型作假设检验的F值等于 3.88931÷44.36594。 ( × ) 改错:44.36594÷3.88931

8. 对P241练习题中计算题第1题的资料,请完成下列是非判断与改错:

⑴ 此判别分析共分为铜兰蛋白、兰色反应、吲哚乙酸、中性硫化物四类。 (× ) 改错:共分为胃癌、萎缩性胃炎、非胃病三类

⑵ 有胃癌、萎缩性胃炎、非胃病三个判别指标。 ( × ) 改错:有铜兰蛋白、兰色反应、吲哚乙酸、中性硫化物4个判别指标。 ⑶ 因判别指标是分类变量,可采用最大似然判别。 ( × ) 改错:因判别指标是分类变量,可采用Bayes判别或Fisher判别 ⑷ 采用Bayes判别分析,应先作判别分析,再筛选判别指标。 (× ) 改错:采用Bayes判别分析,应先筛选判别指标,再作判别分析 ⑸ 此资料既可采用Bayes判别,也可采用Fisher判别。 (√ ) 改错:

(答案)苏大医学部2010级硕士卫生统计 doc 

苏州大学医学部2010级硕士《卫生统计学》试卷2011.1姓名:学院:专业:学号:成绩:一、最佳选择题(20小题,每小题1分,共20分):1.抽样研究的目的是(B):A.研究样本统计量B.由样本推断总体
推荐度:
点击下载文档文档为doc格式
7kz6l4lrhy5kaxd90sbp
领取福利

微信扫码领取福利

微信扫码分享