2020年数学中考第一次模拟试卷(及答案)
一、选择题
1.如图,已知a∥b,l与a、b相交,若∠1=70°,则∠2的度数等于( )
A.120° B.110° C.100° D.70°
2.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是( )
A.③④ A.(0,﹣2)
B.②③ B.(0,﹣4)
C.①④ C.(4,0)
D.①②③ D.(2,0)
3.点 P(m + 3,m + 1)在x轴上,则P点坐标为( ) 4.如图,把一个正方形三次对折后沿虚线剪下,得到的图形是( )
A. B. C. D.
5.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
A.12 B.24
C.123 D.163 6.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图
是( ).
A. B. C. D.
7.如图,矩形纸片ABCD中,AB?4,BC?6,将VABC沿AC折叠,使点B落在点
E处,CE交AD于点F,则DF的长等于( )
3 55 37 35 4A.B.C.D.
8.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )
A.10° B.15° C.18° D.30°
9.现定义一种变换:对于一个由有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,例如序列S0:(4,2,3,4,2),通过变换可生成新序列S1:(2,2,1,2,2),若S0可以为任意序列,则下面的序列可作为S1的是( )
A.(1,2,1,2,2) 3)
B.(2,2,2,3,3) C.(1,1,2,2,
D.(1,2,1,1,2)
10.如图,将?ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F,若
?ABD?48o,?CFD?40o,则?E为( )
A.102o B.112o C.122o D.92o
11.如图,AB为⊙O直径,已知为∠DCB=20°,则∠DBA为( )
A.50°
B.20°
C.60°
D.70°
12.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为( )
A.10 B.12 C.16 D.18
二、填空题
k1k(x?0)及y2?2(x?0)
xx的图象分别交于A、B两点,连接OA、OB,已知?OAB的面积为4,则
13.如图,直线l?x轴于点P,且与反比例函数y1?k﹣1k2?________.
14.如图,⊙O是△ABC的外接圆,∠A=45°,则cos∠OCB的值是________.
15.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为______.
16.如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为 .
17.已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是_____. 18.分解因式:2x2﹣18=_____.
19.如图所示,过正五边形ABCDE的顶点B作一条射线与其内角?EAB的角平分线相交于点P,且?ABP?60?,则?APB?_____度.
20.二元一次方程组??x?y?6的解为_____.
2x?y?7?三、解答题
21.(问题背景)
如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,点E、F分别是边BC、CD上的点,且∠EAF=60°,试探究图中线段BE、EF、FD之间的数量关系.
小王同学探究此问题的方法是:延长FD到点G,使GD=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 . (探索延伸)
如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,点E、F分别是边BC、CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由. (学以致用)
如图3,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=6,E是边AB上一点,当∠DCE=45°,BE=2时,则DE的长为 .
22.某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)
(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣
成本)
(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.
(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?
23.已知:如图,点E,A,C在同一条直线上,AB∥CD,AB=CE,AC=CD.
求证:BC=ED.
1?m2?4m?4?24.计算:?1??a?b??a?2b??(2a?b);?2??1?. ??2m?1m?m??225.某公司销售两种椅子,普通椅子价格是每把180元,实木椅子的价格是每把400元. (1)该公司在2019年第一月销售了两种椅子共900把,销售总金额达到了272000元,求两种椅了各销售了多少把?
(2)第二月正好赶上市里开展家俱展销活动,公司决定将普通椅子每把降30元后销售,实木椅子每把降价2a%(a>0)后销售,在展销活动的第一周,该公司的普通椅子销售量比上一月全月普通椅子的销售量多了
10a%:实木椅子的销售量比第一月全月实木椅子的销售3量多了a%,这一周两种椅子的总销售金额达到了251000元,求a的值.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.B 解析:B 【解析】
【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.
【详解】如图,∵∠1=70°,